


Qlik	Sense:	Advanced	Data
Visualization	for	Your	Organization



Table	of	Contents

Qlik	Sense:	Advanced	Data	Visualization	for	Your	Organization
Credits
Preface

What	this	learning	path	covers
What	you	need	for	this	learning	path
Who	this	learning	path	is	for
Reader	feedback
Customer	support

Downloading	the	example	code
Errata
Piracy
Questions

1.	Module	1
1.	Qlik	Sense®	and	Data	Discovery

Continuing	disruption
Qlik	Sense®	and	the	QlikView.Next	project

Making	sense	of	modern	business
What	is	data	discovery?

The	empowered	user
Interaction	with	data
Traditional	business	intelligence	architecture

The	Qlik®	way
Color	coding
Freedom	of	data	navigation
Calculation	on	demand

Data	discovery—the	evolution	of	BI
Summary

2.	Overview	of	a	Qlik	Sense®	Application's	Life	Cycle
Overview	of	an	application's	life	cycle

Starting	application	authoring
What	makes	up	a	Qlik	Sense®	application?
Sharing	an	application
Continuing	the	application's	life	cycle



Summary
3.	Empowering	Next	Generation	Data	Discovery	Consumers

Data	discovery	consumption	requirements
Introducing	the	hub
Introducing	streams
Exploring	the	components	of	the	application

Sheets
Bookmarks
Data	storytelling

Navigating	and	leveraging	the	associative	experience
Navigation
Smart	visualizations
Global	search
Global	filtering

Extending	with	Library
Summary

4.	Contributing	to	Data	Discovery
Realities	of	the	data	discovery	contributor

Creating	private	bookmarks
Creating	and	sharing	private	sheets

Creating	a	private	sheet
Publishing	a	private	sheet

Creating	a	new	sheet
Adding	a	predefined	visualization	to	a	new	sheet
Creating	a	Combo	chart	object
Publishing	a	private	sheet

Creating	and	sharing	stories
Defining	a	story

Creating	snapshots
Adding	text
Adding	shapes
Media	library

Publishing	your	story
Summary

5.	Authoring	Engaging	Applications
Preparations	and	requirements

The	requirement	specifications



The	communication	problem
A	step-wise	implementation
The	process

Getting	started	with	the	app	creation
Creating	a	new	app

Loading	your	data
Loading	additional	tables
Using	the	Data	load	editor
Creating	a	database	connection
Data	connectors

The	analysis	interface—sheets	and	visualizations
Creating	a	sheet
Adding	visualizations
Adding	dimensions	and	measures
Defining	bar	charts
Storytelling

The	application	library
Which	fields	should	be	exposed?
Defining	KPIs
Creating	library	entries

Best	practices	in	data	visualization
Dashboard
Analysis
Reporting
Structuring	a	sheet
Graphs	and	other	visualizations
Dimensions	and	measures

The	bar	chart
The	pie	chart
The	line	chart
The	KPI	object
The	gauge
The	scatter	chart
The	tree	map
The	geographical	map
Tables
Sorting	and	colors



Migrating	applications	from	QlikView®	to	Qlik	Sense®
Changes	to	the	script
Changes	to	the	user	interface

Publishing	your	apps
Summary

6.	Building	Qlik	Sense®	Data	Models
The	QIX	engine
The	Qlik	Sense®	data	model

Creating	a	multitable	data	model
Linking	tables

Structuring	your	data
Normalization
Star	schema	and	snowflake	schema
Pitfalls	in	the	data	model

The	data	model	viewer
Using	preview	mode

Summary
7.	Qlik	Sense®	Apps	in	the	Cloud

Why	use	the	cloud?
Cloud	sharing
Cloud	content

Using	Qlik	Sense®	apps	in	the	cloud
Uploading	an	app	from	the	desktop
Creating	an	app	in	Qlik	Sense®	Cloud
Sharing	an	app	in	Qlik	Sense®	Cloud
Maintaining	Qlik	Sense®	Cloud	apps

Using	the	Qlik	DataMarket®	content
Adding	the	QlikMarket®	data
Summary

8.	Extending	the	Qlik®	Analytic	Platform
Qlik®	Dev	Hub

Web	mashups
Extending	the	Qlik	Sense®	client
Engine	API	Explorer

Developer	community	–	Qlik	Branch
Summary

9.	Administering	Qlik	Sense®



The	Qlik	Sense®	architecture
Services
Clients
Applications
Nodes
Streams

Deployment	and	licensing
Single	node	or	multinode
License	and	access	passes
Tokens
Access	rules

Management	and	monitoring
Importing	and	managing	apps
Importing	extensions
Users	and	user	directories
Defining	streams
Connectivity	management
Tasks
System	management
Security	rules
Monitoring

Security
Authentication	and	authorization
Content	security

Summary
10.	Sales	Discovery

The	business	problem
Application	features

Who	are	our	top	customers?
The	360-degree	customer	view
Filtering	customers

Reviewing	shipments	for	top	customers
Reviewing	the	bottom	five	customers

Who	are	our	most	productive	sales	representatives?
Analyzing	products
Analyzing	customer	sales

Building	the	application



The	SalesDetails	table
The	Customers	table
The	AggSales	table
US	States	ISO	CODE	2	polygons

Analyzing	the	Sales	Discovery	Library
Dimensions
Measures
Visualizations

Summary
11.	Human	Resource	Discovery

The	business	problem
Application	features

Sheets
Training	costs
Using	the	global	selector

How	the	application	was	developed
Dimensions

Summary
12.	Travel	Expense	Discovery

The	business	problem
Application	features

Tracking	expenses
Analyzing	expenses	overspent

Digging	deeper	into	the	data
Creating	an	analysis	story	for	travel	expenses

Creating	an	overview
Sharing	our	analysis
Finishing	the	story

Developing	the	application
Examining	the	key	tables

Expenses
PerDiemRates
Airfare
Department
Budget
LinkTable

Dimensions



Measures
Visualizations

Summary
13.	Demographic	Data	Discovery

Problem	analysis
Application	features

Analysis
Using	the	lasso	selector	to	make	selections
Using	the	global	selector	to	make	selections

How	the	application	was	developed
Dimensions
Measures

Summary
2.	Module	2

1.	Getting	Started	with	the	Data
Introduction
Extracting	data	from	databases	and	data	files

Getting	ready…
How	to	do	it…
How	it	works…
There's	more…
See	also…

Extracting	data	from	Web	Files
Getting	ready…
How	to	do	it…
How	it	works…
There's	more…
See	also…

Activating	the	Legacy	Mode	in	Qlik	Sense®	desktop
Getting	ready…
How	to	do	it…
How	it	works…
There's	more…
See	also…

Extracting	data	from	custom	databases
Getting	ready…
How	to	do	it…



How	it	works…
There's	more…
See	also…

Invoking	help	while	in	the	data	load	editor	or	the	expression	editor
Getting	ready…
How	to	do	it…
There's	more…
See	also…

Previewing	data	in	the	Data	model	viewer
Getting	ready
How	to	do	it…
How	it	works...

Viewing	the	data	model
Viewing	the	associations
Table	Meta	Data

There's	more...
Creating	a	Master	Library	from	the	Data	model	viewer

Getting	ready
How	to	do	it...
How	it	works...
There's	more…

Using	a	Master	Library	in	the	Edit	mode
Getting	ready
How	to	do	it...
There's	more…

2.	Visualizations
Introduction
Creating	Snapshots

Getting	ready
How	to	do	it…
How	it	works…
There's	more…
See	also

Creating	and	adding	content	to	a	story
Getting	ready
How	to	do	it…
How	it	works…



There's	more…
See	also

Adding	embedded	sheets	to	the	story
Getting	ready
How	to	do	it…
How	it	works…
There's	more…

Highlighting	the	performance	measure	in	a	bar	chart
Getting	ready
How	to	do	it…
How	it	works…
There's	more…
See	also

Associating	persistent	colors	to	field	values
Getting	ready
How	to	do	it…
How	it	works…
There's	more…
See	also

Using	the	ColorMix1	function
Getting	ready
How	to	do	it…
How	it	works…
There's	more…
See	also

Composition
Getting	ready
How	to	do	it…
How	it	works…
There's	more…

Relationships
Getting	ready
How	to	do	it…
How	it	works…

Comparison
Getting	ready
How	to	do	it…



How	it	works…
See	also

Distribution
Getting	ready
How	to	do	it…
How	it	works…

Structuring	visualizations
Getting	ready
How	to	do	it…
How	it	works…

3.	Scripting
Introduction
Structuring	the	script

Getting	ready
How	to	do	it…
How	it	works…

Efficiently	debugging	the	script
Getting	ready
How	to	do	it…
How	it	works…
There's	more…
See	also

Packaging	the	code	in	script	files
Getting	ready
How	to	do	it…
How	it	works…
See	also

How	to	use	sub	routines	in	Qlik	Sense®
Getting	ready
How	to	do	it…
How	it	works…
There's	more…
See	also

Optimizing	the	UI	calculation	speed
Getting	ready
How	to	do	it…
How	it	works…



Optimizing	the	reload	time	of	the	application
Getting	ready
How	to	do	it…
How	it	works…

Using	a	For	Each	loop	to	load	data	from	multiple	files
Getting	ready
How	to	do	it…
How	it	works…
There's	more…

Using	the	Concat	function	to	store	multiple	field	values	in	a	single	cell
Getting	ready
How	to	do	it…
How	it	works…
There's	more…
See	also

4.	Managing	Apps	and	User	Interface
Introduction
Publishing	a	Qlik	Sense®	application	created	in	Qlik	Sense®	desktop

Getting	ready
How	to	do	it…
How	it	works…
There's	more…

Creating	private,	approved,	and	community	sheets
Getting	ready
How	to	do	it…
How	it	works…
There's	more…
See	also

Publishing	a	Qlik	Sense®	application	to	Qlik	Sense®	cloud
Getting	ready
How	to	do	it…
How	it	works…
There's	more…

Creating	geo	maps	in	Qlik	Sense®
Getting	ready
How	to	do	it…
How	it	works…



There's	more…
Reference	lines	in	Sales	versus	Target	gauge	chart

Getting	ready
How	to	do	it…
How	it	works…
There's	more…
See	also

Effectively	using	the	KPI	object	in	Qlik	Sense®
Getting	ready
How	to	do	it…
How	it	works…
There's	more…
See	also

Creating	Tree	Maps
Getting	ready
How	to	do	it…
How	it	works…
There's	more…

Creating	dimensionless	bar	charts	in	Qlik	Sense®
Getting	ready
How	to	do	it…
How	it	works…
There's	more…
See	also

Adding	Reference	Lines	to	trendline	charts
Getting	ready
How	to	do	it…
How	it	works…

Creating	text	and	images
Getting	ready
How	to	do	it…

Adding	Images
Adding	Text

How	it	works…
Applying	limitations	to	charts

Getting	ready
How	to	do	it…



How	it	works…
There's	more…

Adding	thumbnails	–	a	clear	environment
Getting	ready
How	to	do	it…
How	it	works…

Navigating	many	data	points	in	a	scatter	chart
Getting	ready
How	to	do	it…
How	it	works…
There's	more…

5.	Useful	Functions
Introduction
Using	an	extended	interval	match	to	handle	Slowly	Changing	Dimensions

Getting	ready
How	to	do	it…
How	it	works…
There's	more…
See	also

Using	the	Previous()	function	to	identify	the	latest	record	for	a	dimensional
value

Getting	ready
How	to	do	it…
How	it	works…
There's	more…
See	also

Using	the	NetworkDays()	function	to	calculate	the	working	days	in	a
calendar	month

Getting	ready
How	to	do	it…
How	it	works…
See	also

Using	the	Concat()	function	to	display	a	string	of	field	values	as	a
dimension

Getting	ready
How	to	do	it…
How	it	works…



There's	more…
See	also

Using	the	Minstring()	function	to	calculate	the	age	of	the	oldest	case	in	a
queue

Getting	ready
How	to	do	it…
How	it	works…
There's	more…
See	also

Using	the	Rangesum()	function	to	plot	cumulative	figures	in	trendline
charts

Getting	ready
How	to	do	it…
How	it	works…
See	also

Using	the	Fractile()	function	to	generate	quartiles
Getting	ready
How	to	do	it…
How	it	works…
There's	more…
See	also

Using	the	FirstSortedValue()	function	to	identify	the	median	in	a	quartile
range

Getting	ready
How	to	do	it…
How	it	works…
There's	more…
See	also

Using	the	Declare	and	Derive	functions	to	generate	Calendar	fields
Getting	ready
How	to	do	it…
How	it	works…
There's	more…
See	also

Setting	up	a	moving	annual	total	figure
Getting	ready
How	to	do	it…



How	it	works…
There's	more…
See	also

Using	the	For	Each	loop	to	extract	files	from	a	folder
Getting	ready
How	to	do	it…
How	it	works…

Using	the	Peek()	function	to	create	a	currency	Exchange	Rate	Calendar
Getting	ready
How	to	do	it…
How	it	works…
There's	more…
See	also

Using	the	Peek()	function	to	create	a	Trial	Balance	sheet
Getting	ready
How	to	do	it…
How	it	works…
See	also

6.	Set	Analysis
Introduction
Cracking	the	syntax	for	Set	Analysis

Getting	ready
How	to	do	it…
How	it	works…
There's	more…
See	also

Using	flags	in	Set	Analysis
Getting	ready
How	to	do	it…
How	it	Works…
There's	more…
See	also

Using	the	=	sign	with	variables	in	Set	Analysis
Getting	ready
How	to	do	it…
How	it	works…
See	also



Point	in	time	using	Set	Analysis
Getting	ready
How	to	do	it…
How	it	works…

Using	comparison	sets	in	Set	Analysis
Getting	ready
How	to	do	it…
How	it	works…

Using	embedded	functions	in	Set	Analysis
Getting	ready
How	to	do	it…
How	it	works…
There's	more…

Creating	a	multi-measure	expression	in	Set	Analysis
Getting	ready
How	to	do	it…
How	it	works…

Using	search	strings	inside	a	set	modifier
Getting	ready
How	to	do	it…
How	it	works…
There's	more…
See	also

Capturing	a	list	of	field	values	using	a	concat()	function	in	Set	Analysis
Getting	ready
How	to	do	it…
How	it	works…

Using	the	element	functions	P()	and	E()	in	Set	Analysis
Getting	ready
How	to	do	it…
How	it	works…
There's	more…
See	also

7.	Extensions	in	Qlik	Sense®
Introduction
Creating	an	HTML	visualization	extension	for	Qlik	Sense®

Getting	ready



How	to	do	it…
How	it	works…
There's	more…
See	also

Defining	a	Properties	panel	in	Qlik	Sense®	visualizations
Getting	ready
How	to	do	it…
How	it	works…
There's	more…

Creating	custom	components	within	Qlik	Sense®	visualizations
Getting	ready
How	to	do	it…
How	it	works…
There's	more…

Using	data	with	extensions
Getting	ready
How	to	do	it…
How	it	works…
See	also

8.	What's	New	in	Version	2.1.1?
Introduction
Using	the	visual	exploration	capability	in	Qlik	Sense®	2.1.1

Getting	ready
How	to	do	it…
How	it	works…
There's	more…
See	also

Defining	variables	in	Qlik	Sense®
Getting	ready
How	to	do	it…
How	it	works…
There's	more…
See	also

Exporting	stories	to	MS	PowerPoint
Getting	ready
How	to	do	it…
How	it	works…



There's	more…
See	also

Using	the	Qlik	Dev	Hub	in	Qlik	Sense®	2.1.1
Getting	ready
How	to	do	it…

Single	configurator
Extensions	editor
Mashup	editor

How	it	works…
There's	more…

Single	configurator
Extension	editor

See	also
Using	Extension	editor	in	Qlik	Dev	Hub

Getting	ready
How	to	do	it…
How	it	works…
There's	more…
See	also

Using	Qlik	Dev	Hub	to	generate	mashups
Getting	ready
How	to	do	it…
How	it	works…
There's	more…
See	also

Embedding	Qlik	Sense®	application	on	a	website	using	a	single
configurator

Getting	ready
How	to	do	it…
How	it	works…
There's	more…
See	also

Using	the	Qlik	DataMarket
Getting	ready…
How	to	do	it…
How	it	works…
See	also



Creating	dynamic	charts	in	Qlik	Sense®
Getting	ready
How	to	do	it…
How	it	works…
There's	More….

Using	Smart	Search
Getting	ready
How	to	do	it…
How	it	works…
There's	More….
See	also

Using	smart	data	load	profiling
Getting	ready
How	to	do	it…
How	it	works…
There's	More….

Conclusion
A.	Appendix

Keyboard	shortcuts	in	Qlik	Sense®	Desktop
3.	Module	3

1.	Getting	Ready	with	Predictive	Analytics
Analytics,	predictive	analytics,	and	data	visualization
Purpose	of	the	book
Introducing	R,	Rattle,	and	Qlik	Sense	Desktop
Installing	the	environment

Downloading	and	installing	R
Starting	the	R	Console	to	test	your	R	installation

Downloading	and	installing	Rattle
Installing	Qlik	Sense	Desktop
Exploring	Qlik	Sense	Desktop
Further	learning
Summary

2.	Preparing	Your	Data
Datasets,	observations,	and	variables
Loading	data

Loading	a	CSV	File
Transforming	data



Transforming	data	with	Rattle
Rescaling	data
Using	the	Impute	option	to	deal	with	missing	values
Recoding	variables
Binning

Indicator	variables
Join	Categories
As	Category
As	Numeric

Cleaning	up
Exporting	data
Further	learning
Summary

3.	Exploring	and	Understanding	Your	Data
Text	summaries

Summary	reports
Measures	of	central	tendency	–	mean,	median,	and	mode
Measures	of	dispersion	–	range,	quartiles,	variance,	and	standard

deviation
Range
Quartiles
Variance
Standard	deviation

Measures	of	the	shape	of	the	distribution	–	skewness	and	kurtosis
Showing	missing	values

Visualizing	distributions
Numeric	variables

Box	plots
Histograms
Cumulative	plots

Categorical	variables
Bar	plots
Mosaic	plots

Correlations	among	input	variables
The	Explore	Missing	and	Hierarchical	options

Further	learning
Summary



4.	Creating	Your	First	Qlik	Sense	Application
Customer	segmentation	and	customer	buying	behavior
Loading	data	and	creating	a	data	model

Preparing	the	data
Creating	a	simple	data	app
Associative	logic
Creating	charts
Analyzing	your	data
Further	learning
Summary

5.	Clustering	and	Other	Unsupervised	Learning	Methods
Machine	learning	–	unsupervised	and	supervised	learning

Cluster	analysis
Centroid-based	clustering	the	using	K-means	algorithm
Customer	segmentation	with	K-means	clustering

Preparing	the	data	in	Qlik	Sense
Creating	a	customer	segmentation	sheet	in	Qlik	Sense

Hierarchical	clustering
Association	analysis

Further	learning
Summary

6.	Decision	Trees	and	Other	Supervised	Learning	Methods
Partitioning	datasets	and	model	optimization
Decision	Tree	Learning
Entropy	and	information	gain
Underfitting	and	overfitting
Using	a	Decision	Tree	to	classify	credit	risks

Using	Rattle	to	score	new	loan	applications
Creating	a	Qlik	Sense	application	to	predict	credit	risks

Ensemble	classifiers
Boosting
Random	Forest
Supported	Vector	Machines

Other	models
Linear	and	Logistic	Regression
Neural	Networks

Further	learning



Summary
7.	Model	Evaluation

Cross-validation
Regression	performance

Predicted	versus	Observed	Plot
Measuring	the	performance	of	classifiers

Confusion	matrix,	accuracy,	sensitivity,	and	specificity
Risk	Chart
ROC	Curve

Further	learning
Summary

8.	Visualizations,	Data	Applications,	Dashboards,	and	Data	Storytelling
Data	visualization	in	Qlik	Sense

Visualization	toolbox
Creating	a	bar	chart

The	Data	menu
The	Sorting	menu
The	Add-ons	menu
The	Appearance	menu

Data	analysis,	data	applications,	and	dashboards
Qlik	Sense	data	analysis

In-memory	analysis
Associative	experience

Data	applications	and	dashboards
The	DAR	approach

Data	storytelling	with	Qlik	Sense
Creating	a	new	story

Further	learning
Summary

9.	Developing	a	Complete	Application
Understanding	the	bike	rental	problem
Exploring	the	data	with	Qlik	Sense

Checking	for	temporal	patterns
Visual	correlation	analysis

Creating	a	Qlik	Sense	App	to	control	the	activity
Using	Rattle	to	forecast	the	demand

Correlation	Analysis	with	Rattle



Building	a	model
Improving	performance

Model	evaluation
Scoring	new	data

Further	learning
Summary

A.	Bibliography
Index



Qlik	Sense:	Advanced	Data
Visualization	for	Your	Organization



Qlik	Sense:	Advanced	Data
Visualization	for	Your	Organization
Copyright	©	2017	Packt	Publishing	All	rights	reserved.	No	part	of	this	course
may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in	any	form	or	by
any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the
case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	course	to	ensure	the
accuracy	of	the	information	presented.	However,	the	information	contained	in
this	course	is	sold	without	warranty,	either	express	or	implied.	Neither	the
authors,	nor	Packt	Publishing,	and	its	dealers	and	distributors	will	be	held	liable
for	any	damages	caused	or	alleged	to	be	caused	directly	or	indirectly	by	this
course.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of
the	companies	and	products	mentioned	in	this	course	by	the	appropriate	use	of
capitals.	However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this
information.

Published	on:	December	2017

Production	reference:	1121217

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78899-492-7

www.packtpub.com

http://www.packtpub.com


Credits
Authors

Dr.	Christopher	Ilacqua

Dr.	Henric	Cronström

James	Richardson

Philip	Hand

Neeraj	Kharpate

Ferran	Garcia	Pagans

Reviewers

Arthur	Lee

Steve	Dark

Holly	A.	Kraig-Helton

Pablo	Labbe	Ibaceta

Stefan	Stoichev

Gert	Jan	Feick

Miguel	Ángel	García

Content	Development	Editor

Snehal	Kolte

Production	Coordinator

Aparna	Bhagat



Preface
Qlik	Sense	is	powerful	and	creative	visual	analytics	software	which	allows	users
in	discovering	data,	exploring	the	data,	and	digging	out	the	meaningful	insights
in	order	to	take	profit	making	decisions	for	your	business.	This	course	begins
with	introducing	you	to	features	and	functions	of	the	most	modern	edition	of
Qlik	Sense	to	build	grip	with	the	Qlik	Sense	application.	The	course	will	teach
how	you	can	administer	the	data	architecture	in	Qlik	Sense,	thereby	enabling
you	to	customize	your	own	Qlik	Sense	application	for	your	business	intelligence
needs.	The	course	also	contains	numerous	recipes	in	order	to	overcome
challenging	situations	while	creating	fully	featured	desktop	applications	in	Qlik
Sense.	The	course	also	explains	how	to	combine	Rattle	and	Qlik	Sense	Desktop
for	applying	predictive	analytics	to	their	data	for	developing	real-world
interactive	data	applications.

On	completion	of	this	course,	you	would	be	self-sufficient	to	improve	your	data
analysis	and	how	you	can	apply	predictive	analytics	to	your	datasets.	Through
this	course,	you	would	be	able	to	create	predictive	models	and	data	application
allowing	you	to	explore	your	data	insights	much	deeper.



What	this	learning	path	covers
Module	1,	Learning	Qlik	Sense:	The	Official	Guide	Second	Edition,	in	this
module,	you	will	learn	about	Qlik	Sense,	Qlik's	self-service	visualization
platform.	Our	aim	is	to	help	you	get	more	from	your	data	by	applying	Qlik	Sense
and	its	unique	capabilities	to	your	analytic	needs.	At	the	beginning	of	this
module,	we'll	cover	why	Qlik	chose	to	develop	Qlik	Sense,	what	data	discovery
is	and	can	do,	and	the	strategy	and	vision	behind	the	product.	Later,	we'll	address
practical	considerations,	including	the	Qlik	Sense	application's	life	cycle,	how	to
meet	the	needs	of	different	types	of	users,	how	to	develop	and	administer
engaging	Qlik	Sense	applications,	data	modeling	and	getting	the	most	out	of	the
QIX	engine.	The	module	concludes	by	outlining	a	series	of	example	applications
built	using	Qlik	Sense,	to	address	analysis	needs	in	sales	management,	HR,	T&E
management,	and	demographics.

Module	2,	Qlik	Sense	Cookbook,	this	module	uncovers	all	the	wonderful	features
of	Qlik	Sense	product.	It	will	help	you	to	overcome	the	challenges	faced	in	day
to	day	Qlik	Sense	implementations.	The	solutions	are	discussed	through	simple
and	easy	to	understand	recipes.

Module	3,	Predictive	Analytics	using	Rattle	and	Qlik	Sense,	the	objective	of	this
module	is	to	introduce	you	to	predictive	analytics	and	data	visualization	by
developing	some	example	applications.	We'll	use	R	and	Rattle	to	create	the
predictive	model	and	Qlik	Sense	to	create	a	data	application	that	allows	business
users	to	explore	their	data.	We	use	Rattle	and	Qlik	Sense	to	avoid	learning
programming	and	focus	on	predictive	analytics	and	data	visualizations	concepts.



What	you	need	for	this	learning	path
Module	1:

You	will	need	a	copy	of	Qlik	Sense	Desktop,	which	is	available	for	free	at
http://www.qlik.com/us/explore/products/sense/desktop.	After	that,	you	just	need
some	time	and	a	good	comfortable	chair.	Additionally,	the	sample	application's
examples	and	many	others	are	available	for	you	to	explore	live	on	http://sense-
demo.qlik.com/.	Please	bookmark	this	link	as	additional	demonstrations	and
examples	are	constantly	being	added	and	updated.

Module	2:

The	user	needs	to	install	Qlik	Sense	Desktop	version	2.1.1,	which	can	be
downloaded	for	free	from:	http://www.qlik.com/try-or-buy/download-qlik-sense.
The	user	also	needs	to	install	Qlik	Sense	Server	version	2.1.1	for	the	recipe	titled
Publishing	a	Qlik	Sense	application	on	Qlik	Sense	Server,	given	in	Chapter	4,
Managing	Apps	and	User	Interface.	The	Qlik	Sense	Server	installer	file	can	be
obtained	from:	http://www.qlik.com.

One	needs	to	login	using	the	customer	account	credentials	to	get	access	to	the
files	under	Support	|	Customer	Downloads.	You	also	need	to	install	the	SAP
connector	for	the	recipe	titled	Extracting	Data	from	custom	Databases	from
Chapter	1,	Getting	Started	with	the	Data.	In	order	to	work	with	the	SAP
connector,	you	will	need	to	obtain	a	license	from	Qlik.	A	part	of	this	recipe	also
makes	use	of	QlikView	which	can	be	downloaded	for	free	from:
http://www.qlik.com/try-or-buy/download-qlikview.

Module	3:

To	install	our	learning	environment	and	complete	the	examples,	you	need	a	64-
bit	computer:

OS:	Windows	7,	Windows	8,	or	8.1
Processor:	Intel	Core2	Duo	or	higher
Memory:	4	GB	or	more
.NET	Framework:	4.0
Security:	Local	admin	privileges	to	install	R,	Rattle,	and	Qlik	Sense.

http://www.qlik.com/us/explore/products/sense/desktop
http://sense-demo.qlik.com/
http://www.qlik.com/try-or-buy/download-qlik-sense
http://www.qlik.com
http://www.qlik.com/try-or-buy/download-qlikview


Who	this	learning	path	is	for
This	course	is	for	anyone	who	wishes	to	understand	and	utilize	the	various	new
approaches	to	business	intelligence	actively	in	their	business	practice.	Basics	of
business	intelligence	concepts	will	be	helpful	when	picking	up	this	course,	but
not	mandatory.



Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think
about	this	course—what	you	liked	or	disliked.	Reader	feedback	is	important	for
us	as	it	helps	us	develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and
mention	the	course's	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either
writing	or	contributing	to	a	book,	see	our	author	guide	at
www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors


Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	course,	we	have	a	number	of	things
to	help	you	to	get	the	most	from	your	purchase.



Downloading	the	example	code
You	can	download	the	example	code	files	for	this	course	from	your	account	at
http://www.packtpub.com.	If	you	purchased	this	course	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly
to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	course	in	the	Search	box.
5.	 Select	the	course	for	which	you're	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	course	from.
7.	 Click	on	Code	Download.

You	can	also	download	the	code	files	by	clicking	on	the	Code	Files	button	on
the	course's	webpage	at	the	Packt	Publishing	website.	This	page	can	be	accessed
by	entering	the	course's	name	in	the	Search	box.	Please	note	that	you	need	to	be
logged	in	to	your	Packt	account.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the
folder	using	the	latest	version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

The	code	bundle	for	the	course	is	also	hosted	on	GitHub	at
https://github.com/PacktPublishing/Qlik-Sense-Advanced-Data-Visualization-
for-your-Organization.	We	also	have	other	code	bundles	from	our	rich	catalog	of
books,	videos,	and	courses	available	at	https://github.com/PacktPublishing/.
Check	them	out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Qlik-Sense-Advanced-Data-Visualization-for-your-Organization
https://github.com/PacktPublishing/


Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,
mistakes	do	happen.	If	you	find	a	mistake	in	one	of	our	courses—maybe	a
mistake	in	the	text	or	the	code—we	would	be	grateful	if	you	could	report	this	to
us.	By	doing	so,	you	can	save	other	readers	from	frustration	and	help	us	improve
subsequent	versions	of	this	course.	If	you	find	any	errata,	please	report	them	by
visiting	http://www.packtpub.com/submit-errata,	selecting	your	course,	clicking
on	the	Errata	Submission	Form	link,	and	entering	the	details	of	your	errata.
Once	your	errata	are	verified,	your	submission	will	be	accepted	and	the	errata
will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the
course	in	the	search	field.	The	required	information	will	appear	under	the	Errata
section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support


Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all
media.	At	Packt,	we	take	the	protection	of	our	copyright	and	licenses	very
seriously.	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
Internet,	please	provide	us	with	the	location	address	or	website	name
immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected
pirated	material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you
valuable	content.

mailto:copyright@packtpub.com


Questions
If	you	have	a	problem	with	any	aspect	of	this	course,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com


Part	1.	Module	1
Learning	Qlik	Sense:	The	Official	Guide	Second	Edition

Get	the	most	out	of	your	Qlik	Sense	investment	with	the	latest	insight	and
guidance	direct	from	the	Qlik	Sense	team



Chapter	1.	Qlik	Sense®	and	Data
Discovery
In	this	chapter,	we'll	start	getting	to	grips	with	what	Qlik	Sense	offers	by	getting
a	better	understanding	of	Qlik's	background	and	how	Qlik	Sense	was	developed.
In	addition,	we	will	examine	the	discovery-based	approach	to	business
intelligence	that	Qlik	invented.

We	will	cover	the	following	topics:

Qlik's	history	in	business	intelligence	and	the	evolution	of	data	discovery
The	QlikView.Next	project
The	Qlik	philosophy	and	approach	to	data	discovery
The	importance	of	the	empowered	user
How	a	user	really	interacts	with	data
The	difference	between	traditional	BI	and	data	discovery



Continuing	disruption
In	the	world	of	technology,	there's	a	lot	of	talk	about	creating	new	products	that
disrupt	existing	markets,	but	very	few	organizations	can	say	they've	done	it	for
real.	Qlik	is	one	of	them.

In	2007,	the	business	intelligence	(BI)	software	market	changed	forever.	Oracle
bought	Hyperion,	SAP	bought	Business	Objects,	and	IBM	bought	Cognos.	The
conventional	wisdom	was	that	BI	would	effectively	cease	to	exist	as	a
standalone	market,	subsumed	into	larger	stacks	of	technology.

However,	this	wasn't	the	case.	In	fact,	by	2007,	a	revolution	was	already	well
underway.	The	BI	world	was	being	fundamentally	disrupted,	challenged	by	the
new	approach	pioneered	by	Qlik	(then	called	QlikTech).	The	disruptive
technology	Qlik	developed	was	called	QlikView.	To	differentiate	QlikView	from
the	established	BI	products,	Qlik	began	to	call	the	new	disruptive	approach
Business	Discovery,	later	adopting	data	discovery	as	this	term	gained	industry-
wide	adoption.

Surprisingly	though,	when	it	was	launched	in	1994,	what	became	QlikView	was
not	consciously	targeted	at	the	BI	software	market.	Rather,	its	initial	task	was	to
help	its	customer	understand	which	of	a	number	of	individual	parts	and
manufacturing	materials	were	used	across	the	range	of	the	complex	machines	it
manufactured,	and	which	parts	were	not	associated	with	particular	items	(a
critical	point	we'll	explore	later	in	this	chapter	and	revisit	throughout	this	book).
The	goal	was	to	visualize	the	logical	relations	between	the	parts,	materials,
machines,	and	products.	This	origin	led	to	an	approach	completely	different	from
BI	at	the	time,	one	in	which	all	the	associated	data	points	are	linked
automatically,	enabling	discoveries	to	be	made	through	free	exploration	of	data.

As	it	became	more	widely	used	and	deployed,	it	was	evident	that	what	QlikView
was	being	used	for	was	a	new	type	of	BI.	QlikView's	speed,	usability,	and
relevance	challenged	the	standard	approach	that	was	dominated	by	IT-deployed
data	reporting	products,	which	are	slow	performing,	hard	to	use,	and	built
around	models	that	struggle	to	keep	up	with	the	pace	of	modern	business	needs.

QlikView's	intuitive	visual	user	interface,	patented	associative	data	handling—



running	entirely	in	memory—and	its	capability	to	draw	data	together	from
disparate	sources	changed	the	landscape.	Discovery-led	BI	is	about	giving
people	the	power	to	interact	with	and	explore	data	in	a	much	more	valuable	way
than	the	older,	reporting-led	BI	incumbency	could.	This	is	massively	compelling
to	people	who	need	to	quickly	ask	and	answer	questions	based	on	data	in	order
to	learn	and	make	decisions,	and	proved	very	compelling	to	people	jaded	with
the	way	things	had	been	done	before.	QlikView	became	very	successful,
dominating	the	market	it	pioneered.

So	what	did	Qlik	do	then?	Sit	back	and	relax,	proud	of	its	disruptive	chops,	safe
in	the	knowledge	that	it	had	recast	an	established	market	in	its	image?	No.	Far
from	it.	Instead,	Qlik	took	the	decision	to	transform	the	BI	market	again	with	a
new	product.



Qlik	Sense®	and	the	QlikView.Next
project
Qlik	decided	to	design	and	develop	a	next	generation	data	discovery	platform.
Developed	under	the	project	name	QlikView.Next	and	launched	as	Qlik	Sense,
the	product	was	anchored	to	five	themes:

Gorgeous	and	genius:	Within	this	theme,	Qlik	focused	on	three	product
scenarios,	with	an	overall	emphasis	on	ad	hoc	analysis.	The	scenarios	were
that	the	product	should	be	visually	beautiful,	support	associative,
comparative,	and	anticipatory	analysis,	and	a	seamless	experience	across	all
devices.
Mobility	with	agility:	This	theme	was	about	all	users	having	access	and	the
ability	to	answer	new	analytical	questions	as	they	arise	in	new	situations
and	contexts	when	using	a	mobile	device,	with	no	difference	between	static
and	mobile	experiences.
Compulsive	collaboration:	Business	intelligence	and	collaboration	are
inseparable;	decision-making	is,	by	nature,	a	collaborative	activity.	The
intent	was	to	build	a	product	that	could	reside	at	the	forefront	of	users'
shared	decision-making	and	give	them	the	chance	to	communicate	their
insights	through	collaboration	and	storytelling.
The	premier	platform:	This	theme	was	about	enabling	Qlik	customers	and
partners	to	quickly	and	easily	deliver	apps	and	solutions	that	are	perfectly
relevant	to	their	constituents.	Within	this	theme,	Qlik	focused	on	four
scenarios:	data	access,	the	development	experience,	expanding	its
ecosystem	through	broadened	APIs,	and	offering	a	unified	platform
interface.
Enabling	new	enterprise:	With	this	theme,	Qlik	was	focused	on	making
capabilities	such	as	security,	reliability,	and	scalability	available	to	all
customers,	not	just	the	largest	ones,	and	giving	administrators	and	authors
the	same	kind	of	gorgeous	and	genius	experience	other	users	get.



Making	sense	of	modern	business
You	may	say,	"Well,	that's	all	good,	but	it	doesn't	really	tell	me	why	this	matters
or	why	Qlik	Sense	is	important."

To	answer	this,	we	have	to	think	about	what	the	focus	of	technology	in	our
organizations	has	been	in	the	recent	past.	For	25	years,	most	of	our	investment	in
IT	has	been	on	effectively	improving	reliability,	using	ERP	or	transactional
applications	to	streamline	processes,	drive	out	inefficiencies,	and	deliver	our
products	or	services	effectively.	However,	if	most	organizations,	and	particularly
groups	of	competitors,	are	now	operating	at	similar	levels	of	procedural
effectiveness,	a	key	question	arises,	"What	do	we	do	differently	to	win?"

The	answer	lies	in	out-thinking	our	competitors	through	the	use	of	data	and
analysis.	This	requires	a	shift	of	focus	in	both	how	we	run	our	businesses	and	the
IT	world	needed	to	do	so.	So	far,	analytics	has	too	often	been	a	poor	cousin,
something	that	happens	afterwards	on	the	edges,	a	tactical	rather	than	strategic
activity.	That's	no	longer	good	enough.	Businesses	using	data-driven	decision-
making	perform	measurably	better	than	those	that	don't.	When	we	can	see	(and
measure)	new	things,	we	are	driven	to	seek	answers	and	thus,	new	ways	of
thinking	and	operating.	Organizations	that	do	not	have	analytics	as	a	central	part
of	their	business	activities	will	not	thrive,	or	even	survive,	in	the	new	reality.

Qlik	Sense	is	about	doing	exactly	that—freeing	up	the	analytical	skills	of
individuals	in	organizations,	whatever	their	role.	This	book	shows	you	how	to
make	the	most	of	that	and	alter	how	your	organization	uses	information.



What	is	data	discovery?
So	we've	already	mentioned	the	new	style	of	BI	that	Qlik	pioneered,	data
discovery,	a	few	times.	In	this	section,	we'll	look	at	that	in	more	detail.

Over	the	years,	there	have	been	many	names	of	the	different	business
intelligence	methods	and	tools,	such	as:

Executive	Information	Systems	(EIS)
Management	Information	Systems	(MIS)
Online	Analytical	Processing	(OLAP)
Decision	Support	Systems	(DSS)
Management	reporting
Ad	hoc	query	and	reporting

Do	we	really	need	an	additional	label	for	something	that	in	principle	is	the	same
thing?	The	answer	is	yes.

There	is	a	fundamental	difference	between	older	technologies	and	data
discovery,	and	it	is	in	the	approach.	Most	of	the	preceding	tools	are	oriented
towards	technology,	but	data	discovery	is	not.	Instead,	data	discovery	is	oriented
towards	people—towards	the	users	who	need	the	information	in	their	daily	work.

Most	of	the	preceding	tools	were	developed	for	a	small,	select	number	of
decision-makers,	but	again,	data	discovery	is	not.	Data	discovery	is	for
everyone.

Decisions	are	made	at	all	levels	in	a	company.	Obviously,	managers	are
decision-makers,	but	we	sometimes	forget	that	machine	operators	and
receptionists	are	also	decision-makers,	albeit	at	a	more	local	level.	They	also
need	information	to	make	better	decisions.

We,	at	Qlik,	believe	that	information	can	change	the	world	and	that	every	user
can	contribute	to	this	transformation.	Everyone	should	easily	be	able	to	view
data,	navigate	in	data,	and	analyze	data.	Everyone	should	be	able	to	experience
that	"a-ha"	moment	of	discovery.

Data	discovery	is	not	just	business	intelligence.	It	is	user-centric,	dynamic,	and



empowering.	And	it	is	fun!



The	empowered	user
Since	its	founding	in	1994,	Qlik	has	believed	that	a	business	could	improve	its
processes	and	product	quality	by	empowering	employees	and	encouraging	them
to	engage	in	lifelong	learning.	And	Qlik	meant	all	employees—we	saw	everyone
as	a	decision-maker,	not	just	managers.

Although	some	things	have	changed	since	then,	much	remains	the	same.	Users
are	still	often	in	a	situation	where	they	are	unable	to	analyze	their	data—data	that
they	have	the	right	to	see,	or	should	have	the	right	to	see,	in	order	to	do	a	good
job.	Rigid	systems,	technical	limitations,	and	poor	user	interfaces	are	usually	the
culprits.

However,	people's	expectations	of	software	have	changed	dramatically	during
the	last	decade.	Applications	from	Google	and	Apple	invite	users	to	interact	with
simple,	friendly	interfaces.	Search	bars,	Like	buttons,	and	touchscreens	have
transformed	the	way	people	explore,	consume,	and	share	information.	Today,
people	want	the	same	ease	of	use	from	their	business	tools	as	they	get	from	their
consumer	tools	at	home.

The	current	trends	such	as	the	consumerization	of	software,	performance
improvements	of	hardware,	usability	improvements	of	software,	mobile	devices,
social	networks,	and	so	on	just	accelerate	this	change.	All	these	trends	are
reshaping	user	behavior.	Yesterday,	a	user	was	a	passive	end	user,	but	the	user	of
tomorrow	will	be	both	able	and	demanding.	They	will	demand	tools	that	are	fast,
flexible,	and	dynamic.	They	will	demand	tools	that	they	can	use	themselves.	The
empowered	user	is	here	to	stay.



Interaction	with	data
The	classic	picture	of	business	intelligence	is	that	the	user	has	one	or	several
questions,	and	that	the	data	holds	the	answers.	So	the	problem	boils	down	to
creating	a	tool	where	the	user	can	enter	their	questions,	and	the	tool	can	return
the	answers.

However,	this	picture	is	incorrect.	The	truth	is	that	the	user	does	not	always
know	the	question	initially.	Or	rather,	if	the	user	knows	the	question,	they	often
already	know	the	answer.	So,	the	first	thing	the	tool	should	do	is	help	the	user
find	the	questions.

Finding	the	questions	is	a	process	that	involves	exploring	the	data.	It	involves
testing	what	you	suspect	but	don't	know	for	sure.	It	also	involves	discovering
new	facts.	Further,	it	involves	playing	with	data,	turning	it	around,	scrutinizing
the	facts,	and	formulating	a	possible	question.	You	use	your	gut	feeling	as	a
source	of	ideas	and	use	the	data	to	refine	the	ideas	into	knowledge;	or	to	discard
the	ideas,	if	facts	show	that	the	ideas	are	wrong.	You	need	to	be	able	to	play	with
the	data,	to	turn	facts	around	and	look	at	them	from	different	angles	before	you
can	say	that	you	understand	the	data,	and	you	need	to	understand	the	data	before
you	can	talk	smartly	about	it.

When	you	have	found	a	relevant	question,	you	also	need	to	be	able	to	conduct	an
analysis	to	get	a	well-founded	answer	to	the	question.

Finally,	the	process	involves	presenting	the	answer	to	the	question	to	other
people	as	a	basis	for	a	decision	or	an	action.	The	tool	must	support	the	entire
process	of	going	from	ignorance	to	insight.

Hence,	one	major	difference	between	data	discovery	and	the	more	old-fashioned
tools	is	that	data	discovery	software	supports	the	entire	process—the	process	of
coming	from	a	blank	mind,	not	knowing	what	you	are	looking	for,	all	the	way	to
attaining	knowledge	and	taking	action.

This	is	what	data	discovery	is	all	about—helping	you	to	prepare	before	you
speak,	act,	or	make	a	decision.	It	is	the	process	of	going	from	the	darkness	to	the
light,	from	the	unknown	to	the	known,	from	ignorance	to	insight.	It	is	the
process	of	going	all	the	way	from	a	blank	mind	to	a	substantiated	argument.



Traditional	business	intelligence	architecture
It	is	quite	clear	that	users	representing	the	business	want	the	ability	to	ask	and
answer	questions	on	their	own	so	that	they	can	make	better	decisions,	but
traditional	business	intelligence	solutions	aren't	well	suited	for	user	demands.
Instead,	it	is	common	that	the	systems	are	created	in	a	report-centric	manner,
where	governance	and	system	demands	set	the	goals,	rather	than	user	demands.
The	solutions	often	have	preconfigured	dashboards,	fixed	drill-down	paths,
predefined	queries,	predefined	views,	and	very	little	flexibility.

With	traditional	BI,	the	creation	of	the	business	intelligence	solution	often
belongs	to	the	IT	organization,	which	has	to	do	the	following:	create	data
models,	establish	a	semantic	layer,	build	reports	and	dashboards,	and	protect	and
control	the	data.	Often,	the	creation	of	business	intelligence	solutions	is	not
driven	by	user	demands.	The	following	figure	depicts	the	traditional	BI
architecture:



	

When	analyzing	data,	you	might	want	to	set	filters	so	that	you	can	make
selections,	but	with	traditional	tools,	you	often	need	to	start	at	the	top	of
predefined	hierarchies.	So,	instead	of	selecting	a	customer	directly,	you	may
need	to	answer	this	question,	"Which	market	does	this	customer	belong	to?",
then	the	country	the	customer	belongs	to,	and	only	then	can	you	specify	the
customer.

Further,	in	the	drill-down	hierarchy,	you	are	often	limited	to	the	choice	of	one	or
all.	For	example,	you	can	look	at	either	a	single	customer	or	all	of	them.	The
possibility	of	choosing	two	or	three	specific	customers	doesn't	exist,	unless	this
has	been	specifically	predefined	by	the	data	model	developer.

Numbers	are	often	precalculated	to	ensure	short	response	times,	but	this	has	a
drawback	that	if	the	developer	hasn't	anticipated	a	specific	calculation,	the	tool
will	not	be	able	to	show	it.

Further,	the	architecture	of	the	tool	is	often	made	in	three	layers—referred	as	the
stack.	The	first	layer	is	the	Extract,	Transform,	Load	(ETL)	layer,	or	the	data
load	layer.	The	second	is	the	Data	Store	/	Engine	layer,	and	the	third	is	the	User
Interface	(UI)	layer.	The	three	layers	are	different	pieces	of	software,	sometimes
delivered	by	different	software	vendors.

These	three	layers	also	demand	different	skill	sets.	Often,	the	ETL	expert	knows
little	or	nothing	about	the	UI	software,	and	the	UI	expert	knows	little	or	nothing
about	the	ETL.

The	product	stack	in	traditional	BI



	

This	architecture	also	leads	to	problems.	When	an	application	is	built,	the
feedback	comes	from	users	trying	to	use	the	application.	It	could	be	that	KPIs
are	incorrectly	calculated	or	that	dimensions	or	measures	are	missing.	It	could
also	mean	that	the	user	realizes	that	the	initial	requirements	were	incorrect	or
insufficient.	The	feedback	could	imply	changes	in	the	UI,	or	in	the	data	model,
or	even	in	the	ETL	component.

This	type	of	feedback	is	normal—it	happens	with	all	business	intelligence	tools.
It	only	means	that	the	development	of	applications	is	a	process	where	you	need
to	be	agile	and	prepared.	The	expectation	that	you	should	be	able	to	define	an
application	completely	and	correctly	prior	to	a	prototype	or	an	intermediate
version	is	just	unrealistic.

This	is	where	the	architecture	leads	to	problems.	In	order	for	a	project	to	be
successful,	you	need	to	be	able	to	implement	change	requests	and	new	user
demands	with	short	notice,	and	this	is	extremely	difficult	since	three	different
pieces	of	software	and	three	different	groups	of	people	are	involved.	The
distance	between	the	user	and	the	ETL	component	is	just	too	great	for	efficient
communication.	Hence,	the	traditional	architecture	leads	to	a	broken	process.



The	Qlik®	way
Qlik	has	tried	to	solve	all	the	drawbacks	discussed	in	the	preceding	section	by
doing	things	differently.

First	of	all,	you	click	and	view.	You	don't	need	to	formulate	your	question	or	tell
the	system	more	specifically	what	you	want	to	look	at.	You	just	click,	and	by
that,	you	say,	"Tell	me	more	about	that…".	Then	you	look	at	the	calculation,
KPI,	or	the	field	that	might	be	interesting.



Color	coding
The	color	coding	defines	the	answer.	Some	things	are	associated	with	what	you
clicked	on,	and	they	remain	white.	Others	that	are	not	associated	become	gray.
The	color	coding	is	for	simplicity.	The	user	quickly	gets	an	overview	and
understands	how	things	work.

Showing	the	excluded	reveals	the	unexpected,	creates	insight,	and	creates	new
questions.	Hence,	the	gray	color	is	an	important	part	of	making	the	Qlik
experience	an	associative	one—a	data	dialog	and	an	information	interaction—
rather	than	just	a	database	query.	Showing	you	that	something	is	excluded	when
you	didn't	expect	it	means	answering	questions	you	didn't	ask.	This	surprise
creates	new	knowledge	in	a	way	that	only	a	true	data	discovery	platform	can.



Freedom	of	data	navigation
Via	the	associative	experience,	a	user	has	total	freedom	to	navigate	through	data
and	make	any	combination	of	selections.	Any	number	of	values	can	be	selected.
No	drill-down	paths	need	to	be	predefined.	This	allows	the	user	to	follow	their
own	train	of	thought	instead	of	someone	else's.	Start	anywhere	and	just	follow
your	intuition.

This	total	freedom	when	exploring	data	is	really	the	core	attribute	of	data
discovery.



Calculation	on	demand
Further,	no	numbers	need	to	be	precalculated.	Via	the	QIX	engine,	QlikView	and
Qlik	Sense	calculate	everything	on	demand,	usually	in	a	fraction	of	a	second.
The	short	response	time	allows	the	user	to	have	a	conversation	with	the	data,
where	one	answer	leads	to	the	next	question,	which	in	turn	leads	to	next,	and	so
on.	Only	this	way	can	you	interact	with	data	so	that	you	learn	from	it.

The	developer	does	not	need	to	anticipate	all	questions	that	the	user	will	pose.
All	they	need	to	do	is	to	create	a	logical,	coherent	data	model,	and	Qlik	Sense
will	be	able	to	answer	the	question	correctly:	

	

The	stack	(ETL-Data	Store	/	Engine-UI)	is	replaced	by	a	single	integrated
environment.	This	makes	it	possible	to	develop	applications	in	close	cooperation
with	the	users,	and	it	can	often	be	done	by	the	users	themselves.	Feedback	is



implemented	instantaneously	and	the	changes	can	be	evaluated	just	seconds
later.	This	shortens	the	development	cycle	and	ensures	that	the	application	meets
the	user	demands	much	sooner	than	it	would	otherwise.

This	stepwise	implementation	is	crucial	for	the	success	of	a	business	intelligence
project.	It	is	also	the	core	of	modern	agile	methodologies	that	are	used	in	all
types	of	software	development.

With	Qlik	Sense,	all	BI	stack	functions	are	integrated	into	one	tool

	

The	development	of	business	intelligence	applications	must	be	done	as	close	to
the	user	as	possible	to	enable	user	feedback	and	short	development	cycles.	It
does	not	necessarily	imply	self-service	capability,	although	it	is	good	if	this
capability	exists.

With	the	introduction	of	Qlik	Sense,	the	groundbreaking	work	continues	by
enabling	a	new	class	of	users	who	are	highly	mobile	and	require	greater	self-
service	capabilities.	In	Qlik	Sense,	the	self-service	capability	has	become	a	core
feature.	Users	can	define	new	graphs	and	visualizations	that	the	app	developer
didn't	think	of.	This	functionality	empowers	the	users	even	further.

With	Qlik	Sense,	it	has	also	become	easier	to	share	your	findings	and
communicate	them.	This	is	something	that	is	necessary	in	all	environments
where	human	interaction	is	important,	which	is	pretty	much	everywhere.



Data	discovery—the	evolution	of	BI
Data	discovery	is	the	future	of	business	intelligence.	With	data	discovery,	users
pursue	their	own	path	to	insight,	make	discoveries	collaboratively,	and	can	arrive
at	a	whole	new	level	of	decision-making.	Users	are	not	limited	to	predefined
paths	or	precalculated	numbers.	They	do	not	need	to	formulate	questions	ahead
of	time.	They	can	interact	with	data,	find	the	questions,	ask	what	they	need	to
ask,	and	explore	up,	down,	and	sideways,	rather	than	only	drilling	down	in	a
predefined	hierarchy.

Organizations	might	still	need	standardized	reporting	for	many	cases,	but	data
discovery	is	the	approach	that	ultimately	fulfills	the	promise	of	business
intelligence	for	everyone.

Data	discovery	is	the	inevitable	consequence	of	demands	from	active	users	who
want	information	from	the	ever-increasing	amount	of	data.	From	the	very
beginning,	the	core	of	the	Qlik	philosophy	was	the	empowered	user.	It	affects
both	the	view	of	how	BI	solutions	should	be	developed	and	how	the	user
interface	of	the	tool	should	be	designed.

In	summary,	data	discovery	is	user-centric;	it	is	BI	for	the	empowered	user.	It
means	total	freedom	in	how	data	is	explored.	It	should	be	simple	and	have	as
few	limitations	as	possible.	Data	discovery	means	a	user-centric	development
process	so	that	user	feedback	can	be	implemented	instantaneously.



Summary
In	this	chapter,	we	looked	at	why	Qlik	developed	Qlik	Sense	and	at	the	ethos	and
value	of	data	discovery	in	contrast	to	older	forms	of	BI.

In	the	next	chapter,	we	will	look	in	detail	at	Qlik	Sense	itself	and	how	its
features	help	in	meeting	these	requirements,	beginning	with	the	application	life
cycle.



Chapter	2.	Overview	of	a	Qlik
Sense®	Application's	Life	Cycle
In	the	previous	chapter,	we	outlined	the	evolving	requirements	driven	by	the
market,	and	more	importantly	by	business	users	seeking	to	help	make	better
decisions	within	their	organization.	This	chapter's	goal	is	to	highlight	key
features	and	benefits	of	Qlik	Sense	in	meeting	these	requirements.	There	are
thousands	of	features	in	the	initial	release	of	the	software,	and	this	chapter	will
serve	as	a	guide	to	the	major	components,	features,	and	benefits	of	Qlik	Sense	as
you	start	exploring	it.

In	this	chapter,	we'll	cover	the	following	topics:

Overview	of	the	hub
Starting	application	authoring
Components	of	a	Qlik	Sense	application
Sharing	an	application



Overview	of	an	application's	life	cycle
As	we	begin	our	overview	of	a	Qlik	Sense	application	life	cycle,	it	is	best	to	start
at	the	center	of	a	Qlik	Sense	community	collaboration,	which	is	called	the	hub.
The	hub	is	made	up	of	a	number	of	streams	that	contain	applications	that	are
published	by	authors	as	well	as	users	who	can	extend	these	applications	by
adding	personal	sheets	and	data	stories.	The	Qlik	Sense	Management	Console
(QMC)	governs	this	publishing	through	streams	that	have	security	rules.	This
approach	provides	the	highly	governed	system	that	IT	needs,	while	granting
users	the	ability	to	explore	information	and	share	and	collaborate	on	their
findings.

Let's	dig	a	bit	deeper	in	each	of	these	areas:	

Overview	of	the	Qlik	Sense	hub



	



Starting	application	authoring
The	need	for	a	Qlik	Sense	application	often	starts	with	simple	questions,	such	as
these:	Why	are	sales	down	in	my	region?	What	products	are	not	selling	well?
Are	there	opportunities	to	sell	additional	products	to	existing	customers?	When	a
customer	purchases	a	product,	do	they	also	purchase	a	companion	product?
These	types	of	questions	lead	to	the	identification	of	the	place	to	find	this	data.
Qlik	Sense	provides	two	starting	points	that	can	be	from	either	the	Personal
(Desktop)	or	Enterprise	Edition.	This	chapter	will	focus	primarily	on	the	Qlik
Sense	Enterprise	Edition	and	mention	the	differences	in	the	Desktop	Edition.

The	hub	is	made	up	of	two	main	parts.	The	first	is	My	Workspace,	which
enables	users	to	create	new	Qlik	Sense	applications.	The	second	part	comprises
defined	Streams,	which	contain	published	applications	to	be	used	and	extended
by	users.	Streams	are	defined	in	the	QMC,	which	provides	a	broad	range	of
security	rules	to	meet	organizational	requirements.	Once	an	application	is
completed,	it	can	be	published	to	an	authorized	stream	by	the	author.	When
published,	the	application	cannot	be	altered	without	republishing	by	the	author.
The	Desktop	Edition	contains	only	a	hub	for	the	creation	of	Qlik	Sense
applications	and	the	application	author	must	send	all	artifacts	of	the	application,
which	must	include	at	least	the	Qlik	Sense	document	(QVF)	and	extensions	used
in	the	development	of	the	application.	Once	received	by	the	administrator,	these
artifacts	are	imported	through	the	QMC	and	then	published.



What	makes	up	a	Qlik	Sense®	application?
Now,	let's	turn	our	attention	to	what	components	make	up	a	Qlik	Sense
application.	They	are	shown	in	the	following	diagram:	

A	Qlik	Sense	application	component

	

Qlik	Sense	applications	are	made	up	of	a	number	of	components.	Starting	from
the	data	source,	these	components	include	the	following:

Global	Defined	Data	Sources	are	defined	outside	of	Qlik	Sense	and
managed	by	QMC.
Based	on	these	governed	data	sources,	a	Load	Script	is	generated	through
or	written,	which	transforms	this	data	into	Qlik's	in-memory	data	model.
Once	the	Qlik	Sense	data	model	is	defined,	the	author	can	determine	which
fields	will	have	the	most	value	for	users	in	the	creation	of	private	sheets	for
personal	analysis.	These	fields	will	be	used	to	create	dimensions	and	real-
time	calculation	expressions	for	measures.
Additionally,	fully	defined	charts	for	the	most	common	views	of
information	can	be	stored	in	the	Library.



Once	the	Library	is	defined,	sheets	(collections	of	objects),	data	stories,	and
bookmarks	can	be	created.

All	these	components	combine	to	create	a	dynamic	baseline	application	to	be
explored	by	users.



Sharing	an	application
Let's	turn	our	attention	to	how	an	application	is	shared	with	the	Qlik	Sense
community.	There	are	two	methods:

Qlik	Sense	Enterprise	application	publication
Qlik	Cloud

	

Once	a	Qlik	Sense	application	is	complete,	the	author	can	share	it	by	publishing
it	to	a	stream	in	the	Qlik	Sense	hub.	The	publishing	process	can	be	accomplished
by	an	administrator	who	is	responsible	for	a	stream	and	has	publishing	rights	in
the	QMC.	A	Qlik	Sense	author	notifies	a	stream	administrator	that	a	Qlik	Sense
application	is	ready	for	publishing.	The	stream	administrator	logs	into	the	QMC,
identifies	the	Qlik	Sense	application	by	name	and	author,	and	publishes	the
application	in	a	stream.



Qlik	Sense	Enterprise	application	publication

	
Note

This	method	moves	the	application	from	the	personal	workspace,	so	a	copy	of
the	application	should	be	made	prior	to	publishing.	Publishing	and	best	practices
for	delegating	publishing	rights	to	an	author	in	the	QMC	will	be	discussed	in
more	detail	in	Chapter	9,	Administering	Qlik	Sense®.

Once	an	application	is	published	to	a	stream,	it	is	ready	to	be	explored	by	users:



Qlik	Sense	Enterprise	application	consumption

	

Qlik	Sense	Cloud

	

Qlik	provides	a	free	and	easy	way	for	up	to	five	people	to	create	and	share	Qlik
Sense	visualizations	in	the	cloud.	There	are	two	ways	to	take	advantage	of	Qlik
Cloud:

Download	Qlik	Sense	Desktop	and	create	an	application.	Once	created,
register	via	the	Qlik	Sense	client	and	upload	your	application.
With	the	release	of	Qlik	Sense	Cloud,	anyone	can	start	their	data
exploration	immediately	by	registering	at
http://www.qlik.com/us/explore/products/qliksensecloud	and	create	your
application	and	share	it	directly	on	the	cloud.

http://www.qlik.com/us/explore/products/qliksensecloud


Qlik	Sense	Cloud	will	be	explored	in	more	detail	in	Chapter	7,	Qlik	Sense®
Apps	in	the	Cloud.



Continuing	the	application's	life	cycle
One	of	the	key	features	of	a	Qlik	Sense	application	is	its	dynamic	nature,	which
helps	meet	the	broad	requirements	of	data	discovery.	Users	can	explore	the
published	sheets	and	data	stories	as	well	as	create	and	share	private	sheets	and
stories	based	on	the	application	library.	The	library	allows	for	the	creation	of
personal	sheets	and	data	stories	in	a	controlled	manner.	As	mentioned	earlier,	the
library	is	a	collection	of	dimensions,	measures,	and	charts	that	are	defined	by	the
application	author	and	cannot	be	modified	once	they	are	published	to	a	stream
but	can	be	republished	from	the	author's	workspace.	It	allows	a	user	to	extend	an
application	and	share	findings	through	personal	sheets	and	data	stories,	while
keeping	consistent	definitions	across	an	organization.

Taking	a	step	back,	let's	look	at	this	new	application	model.	A	published	Qlik
Sense	application	is	just	at	the	beginning	of	its	life	cycle.	Once	published,	the
application	can	be	expanded	by	the	contributor	within	the	stream	using
additional	published	sheets	and	stories	based	on	the	original	application.

Qlik	Sense	application	life	cycle



	



Summary
Enterprise	Qlik	Sense	applications	are	built	based	on	governed	data	sources
defined	in	the	QMC.	These	data	sources	are	transformed	into	a	QIX	Engine.
Once	the	model	is	defined,	key	dimensions	and	measures	are	created	within	the
library.	This	library	will	be	used	to	create	sheets.	Next,	the	application	is
published	to	a	stream	within	the	hub	for	consumption.	The	application	is	then
explored	by	users,	and	key	findings	can	then	be	shared	through	bookmarks,
private	sheets,	and	data	stories.	These	artifacts	enrich	the	application	and	can	be
published	back	in	the	stream	for	collaboration	between	other	members	of	the
stream.

The	next	chapter	will	explore	each	of	these	capabilities	in	more	detail	and	how
they	meet	the	needs	of	key	stakeholders	within	your	organization.



Chapter	3.	Empowering	Next
Generation	Data	Discovery
Consumers
In	the	previous	chapter,	we	outlined	the	Qlik	Sense	application	life	cycle,	which
provided	an	overview	of	the	key	Qlik	Sense	application	components.	This
chapter's	goal	is	to	highlight	key	features	in	the	context	of	the	specific	user
requirements	that	Qlik	has	identified	as	defining	a	data	discovery	consumer.

In	this	chapter,	we'll	cover	the	following	topics:

Data	discovery	consumption	requirements
The	hub
Navigating	and	leveraging	the	associative	experience



Data	discovery	consumption
requirements
People's	expectations	of	what	technology	should	be	and	how	it	should	work	have
been	set	high	with	the	rise	of	mobile	and	touch	devices.	The	notion	of	a	fixed,
predictable	desktop	has	changed	to	a	dynamic,	unpredictable	virtual	desktop	that
exists	on	whatever	device	you	have	access	to	at	the	moment.	This	can	include
traditional	desktop	PCs	running	Windows,	laptops,	ultrabooks	powered	by
Microsoft	Windows,	Apple	Mac	OS,	hybrid	devices	running	Windows	8.x,
tablets,	Chromebooks,	smartphones…	the	list	goes	on.	This	new	environment
requires	new	approaches	in	both	architecture	and	application	design	that	create
smarter	applications	to	meet	the	demands	of	a	broader	access	from	varying
devices.	Qlik	Sense	was	designed	from	the	ground	up	to	meet	the	diversity	of
requirements	that	now	exist	in	your	enterprise	when	it	comes	to	delivering	data
to	support	decision-making.

Qlik	Sense	adapts	to	very	different	devices,	including	a	laptop	via	Microsoft
Windows,	Apple	iPad	Air,	and	finally,	an	iPhone	5s,	to	name	a	few.	The
following	screenshot	shows	the	diversity	of	consumption	by	users	today:



Diversity	of	consumption

	

The	key	thing	is	that	these	Qlik	Sense	screenshots	could	have	been	taken	using
any	device	on	the	market.	Critically,	and	uniquely,	Qlik	Sense	uses	Responsive
Web	Design	(RWD),	along	with	progressive	disclosure	to	provide	an	optimal
data	discovery	experience	for	users,	whatever	the	form	factor	of	the	device.	This
is	at	the	heart	of	the	Qlik	Sense	architecture,	the	aim	being	to	develop	an	app
once	and	for	it	to	be	consumed/extended	across	any	HTML5-compatible
browser.	For	consistency	and	ease	of	illustration,	the	following	key	components
of	a	Qlik	Sense	application	will	be	illustrated	from	a	laptop	browser,	but	all	these
capabilities	are	available	across	tablets	and	smartphones	as	well.	The	following
key	Qlik	Sense	application	components	will	be	reviewed	from	a	consumer
perspective	where	the	user	has	read-only	access.



Introducing	the	hub
As	noted	in	the	application	life	cycle	in	the	previous	chapter,	Qlik	Sense
provides	a	rich	collaborative	environment	that	is	governed	by	the	QMC	through
streams.	Let's	begin	our	review	with	the	hub,	which	is	the	center	of	a	data
discovery	community.	The	hub	is	a	collection	of	streams,	which	contain	Qlik
Sense	applications.	Through	the	QMC,	an	administrator	defines	the	streams,	and
Qlik	Sense	inherits	security	access	to	these	streams	and	applications	through
security	rules.	Security	rules	are	covered	later	in	Chapter	9,	Administering	Qlik
Sense®,	and	additional	detailed	examples	are	available	in	the	Qlik	Sense	server
user	guide.

In	this	case,	the	consumer,	let's	call	her	Nora,	has	access	to	a	default	stream
called	Everyone	as	well	as	an	administer-defined	stream	called	BI	Center	of
Excellence.	The	hub	is	designed	for	touch-friendly	navigation	(that	is,	it's
designed	to	support	selection	and	navigation	using	fingers!)	between	streams	on
the	left-hand	side	of	the	display,	searching	and	organizing	the	view	in	a	number
of	sorted	ways.	Let's	take	a	look	at	the	hub:	

The	hub

	

Now,	let's	turn	our	attention	to	streams.



Introducing	streams
Streams	are	an	organizing	principle	for	applications	as	well	as	security.	Qlik
thinks	of	streams	as	work	streams	for	information	that	can	be	categorized	based
on	maturity	with	gradual	expansion	of	access	by	audience,	subject	matter,	or	any
other	organizing	principle.	Nora	has	access	to	two	streams,	the	Everyone
stream,	which	is	a	public	stream	created	during	the	server	installation,	and	the	BI
Center	of	Excellence	stream.	The	BI	Center	of	Excellence	stream	contains	a
single	application	called	Executive	Dashboard.	Executive	Dashboard	will	be
used	to	illustrate	how	Qlik	Sense	provides	insights	to	business	decision-makers.

The	BI	Center	of	Excellence	stream

	

Let's	start	with	the	components	of	a	Qlik	Sense	application.



Exploring	the	components	of	the	application
Qlik	Sense	applications	are	made	up	of	three	main	components,	which	include
sheets,	bookmarks,	and	stories.	In	the	case	of	Nora,	who	has	consumer	access,
each	of	these	components	have	been	defined	by	the	application	author	and	are
identified	by	the	label	Approved.	This	label	identifies	these	items	as	part	of	the
core	components	created	by	the	author	and	cannot	be	modified	once	published.

Sheets

Sheets	are	a	core	building	block	of	Qlik	Sense.	Each	sheet	contains	a	collection
of	objects	that	are	arranged	to	provide	context	for	analysis	on	a	particular
subject.	In	this	case,	the	sheets	are	contained	in	the	application	called	Executive
Dashboard.	Note	that	sheets	fall	into	the	following	three	categories:

Base	sheets:	These	sheets	are	defined	by	the	author	of	the	application	and
become	read	only	after	publishing.	They	cannot	be	modified	but	can	be
duplicated	as	a	private	sheet	for	modification.
My	sheets:	These	sheets	are	similar	to	community	sheets	but	are
unpublished,	so	they	can	only	be	viewed	by	the	author.
Community	sheets:	These	are	private	sheets	that	have	been	defined	by	a
user	and	published	to	the	hub.	These	can	be	defined	based	on	duplicated
approved	sheets	and/or	new	sheets	that	are	assembled	through	the	use	of	the
application	library.	This	will	be	discussed	in	detail	in	the	next	section,
Realties	of	data	discovery	power	user.

In	the	case	of	the	Executive	Dashboard	application,	there	are	five	approved
sheets	that	cover	key	application	areas:	KPI	Dashboard,	Sales	Analysis,
Account	Receivables	Analysis,	Inventory	Analysis,	and	Product	Analysis.
Each	of	these	sheets	provide	a	baseline	for	the	consumer's	analysis	and
exploration.



The	application	overview

	

Additionally,	there	are	two	community	sheets,	Pipeline	Analysis	and	Inventory
Variance	Analysis,	which	were	created	by	users	who	have	contributor	access
rights.	This	is	a	power	capability	of	Qlik	Sense	that	allows	users	to	share	key
findings	across	applications.	Like	base	sheets	and	my	sheets,	approved	sheets	are
stored	with	the	Qlik	Sense	application.

Bookmarks

Qlik	Sense	continues	this	popular	feature,	which	was	established	in	QlikView.
Bookmarks	allow	a	user	to	save	the	state	of	a	sheet	(their	selections)	so	that	they
can	be	revisited	at	a	future	time,	shared,	and	can	be	used	to	create	data	stories
that	allow	users	to	combine	key	discoveries	across	many	Qlik	Sense	sheets	and
add	additional	context	through	annotations.	This	example	application	contains
four	bookmarks	as	part	of	the	published	application.



Application	bookmarks

	

The	Approved	bookmarks	section	includes	the	KPI	dashboard	for	alcoholic
beverages,	Australia's	sales	analysis,	convenience	store	account	receivables,	and
convenience	stores'	inventory	analysis	for	deli	and	alcoholic	beverages.	Qlik
Sense	consumers	can	create	bookmarks	to	save	key	discoveries	to	view	at	a	later
date.	Once	interesting	information	is	found,	a	user	may	wish	to	combine
visualizations	and	add	annotations	that	highlight	any	key	discoveries.	This	leads
us	to	our	next	topic,	Data	storytelling.

Data	storytelling

Qlik	Sense	Stories	are	a	collection	of	snapshots	of	key	findings	(visualization
objects)	that	are	assembled	to	share	insights	with	others	in	an	organization.
Snapshots	are	a	graphical	representation	of	the	state	of	visualizations	at	a	certain
point	in	time	and	are	stored	in	the	story	media	library.	Although	snapshots	are
static,	they	contain	embedded	bookmarks	back	in	the	source	sheet,	which
enables	users	(or	people	who	want	to	debate	the	detail	of	a	narrative)	to	continue
the	exploration	with	live	data	from	the	point	at	which	the	snapshot	was	taken.
Like	sheets	and	bookmarks,	base	stories	(published	with	the	application	by	the
author)	and	community	stories	(published	by	users	who	have	contributor	rights)
can	be	seen.



Application	stories

	

The	Executive	Dashboard	application,	shown	in	the	preceding	screenshot,
contains	four	stories	available	for	Nora	to	review.	Community	stories	were
published	by	Elif,	David,	and	Pat	highlighting	product	analysis,	inventory
analysis,	and	sales	analysis,	respectively.	Additionally,	there	is	an	approved	story
named	Application	Overview,	which	was	published	as	part	of	the	application
by	the	author	to	outline	the	goals	and	use	of	the	application.	It	is	a	recommended
best	practice	for	application	authors	to	include	a	story	to	spur	the	adoption	of	an
application	within	the	user	community.	This	topic	leads	us	to	our	next	topic,
Navigating	and	leveraging	the	associative	experience,	in	which	we	will	use	the
Application	Overview	story	to	provide	an	overview	of	the	application.



Navigating	and	leveraging	the	associative
experience
As	mentioned	earlier,	Qlik's	intent	in	building	Qlik	Sense	was	to	create	a	user
experience	that	provides	a	natural	and	intuitive	way	to	explore	data	and	share
key	findings.	To	facilitate	our	discussion,	we	will	refer	to	the	Application
Overview	story.	When	selecting	an	application	from	the	hub,	Nora	is	provided
with	an	application	overview.	This	displays	the	application	name,	a	short
description,	and	a	published	date	and	time	that	provides	key	context	for	the
timelines	of	the	information.

The	Executive	Dashboard	overview

	
Navigation

Additionally,	there	are	three	key	areas	to	explore	in	a	Qlik	Sense	application;
they	include	sheets	(highlighted),	bookmarks,	and	finally,	stories,	which	were
discussed	earlier.	This	application	contains	both	approved	sheets	(developed	by
the	application's	author)	and	community	sheets	that	are	the	results	of



contributors	who	have	published	private	sheets	they	wish	to	share	with	the
community.	This	process	will	be	discussed	in	detail	in	the	next	section.

Now,	let's	open	the	first	sheet	named	KPI	Dashboard.	As	discussed	earlier,
sheets	are	an	amalgamation	of	smart	objects	that	display	information	based	on
the	amount	of	space	available.	In	KPI	Dashboard,	we	can	see	that	the	sheet	is
divided	into	three	key	areas:	Expenses,	Revenue	vs	Last	Year,	and	Accounts
Receivables:

KPI	Dashboard

	

Each	of	these	objects	can	be	used	as	a	filter	to	see	data	association	and	just	as
importantly,	to	see	nonassociated	data	(informally	known	as	"The	Power	of
Gray"	based	on	its	default	coloring	that	users	of	QlikView	have	enjoyed	for
years).	Additionally,	each	of	these	objects	can	be	expanded	to	fullscreen,	as
shown	in	the	next	screenshot.	The	expense	sparkline	chart	can	be	expanded	to
fullscreen	to	reveal	additional	data	points	and	trends.	This	also	facilitates
viewing	and	selections	on	mobile	devices,	where	screen	real	estate	is	limited.



Expand	to	Full	Screen

	
Smart	visualizations

As	we	review	the	Sales	Analysis	sheet,	there	are	a	number	of	innovative	features
that	highlight	the	capabilities	of	Qlik	Sense.	First,	let's	review	the	sales	margin
versus	sales	revenue	scatter	chart.	What	makes	this	chart	smart	is	how	Nora
interacts	with	it.

As	mentioned	earlier,	Qlik	Sense	was	developed	for	mobile	devices,	which
implies	touch	interaction.	In	this	case,	the	scatter	chart	supports	multitouch
selections	on	both	the	axes.	In	this	example,	Nora	has	selected	to	highlight	the
performance	of	sales	representatives	who	have	margins	between	41	to	48	percent
and	sales	between	3.69	million	to	7.01	million.	Additionally,	these	selections	are
in	preview	mode,	which	allows	Nora	to	see	the	impact	of	these	selections	before
confirming	and	moving	on	to	the	next	phase	of	her	discovery.

A	second	area	to	highlight	is	the	use	of	smart	scrolling	noted	in	both	the	Average
Sales	Per	Day	area	and	the	Total	Revenue	by	Product	Group	horizontal	chart.



The	scroll	bars	use	thumbnails	of	the	chart	so	that	Nora	can	easily	navigate	to
the	key	area	for	review.	Additionally,	scroll	bars	appear	after	the	chart	has
reduced	its	size	to	a	point	where	the	entire	dataset	can	no	longer	be	shown	in	the
allocated	space	within	the	sheet.	This	allows	Nora	to	enter	the	numbers	in	a
range	selection	within	any	chart,	for	example,	the	scatter—you	can	type	in	the
exact	number	for	the	range	filter.	Also,	you	can	move	the	filter	range	keeping	the
range	as	you	scroll	along	the	x	or	y	axis.

Sales	Analysis

	
Global	search

Selections	and	filtering	can	also	be	accomplished	through	the	Qlik	Sense	global
search	capabilities.	This	allows	for	contextual	search	to	narrow	down	the	search
criteria	without	restarting	the	search,	like	other	search	engines.	Using	the	power
of	the	associative	engine,	Nora	can	type	various	products	to	preview	their	impact
on	revenue	and	any	association	between	these	products.	In	this	case,	the	search
was	conducted	on	hot	dogs	and	beer.	Note	that	there	is	no	specific	query
language	needed	or	requirements	to	be	formed	in	a	specific	syntax.	Additionally,
the	result	set	is	shown	in	preview	mode,	where	the	search	can	be	appended



and/or	modified	before	commitment	to	these	filters.	This	facilitates	quick
interrogation	of	the	data	and	helps	users	make	more	insights.

Global	Search

	
Global	filtering

To	accompany	global	search,	a	fully	structured	approach	to	filtering	is	available
on	every	sheet	in	the	top	right-hand	corner	called	the	global	filter.	In	the	global
filter,	we	can	see	current	selections	in	the	top	half	of	the	sheet	highlighted	in
green.	The	bottom	half	of	the	sheet	is	reserved	for	dimensions	that	have	not	been
included	in	the	filtering.	Note	the	associated	colors	of	green	for	selected
elements,	white	for	none	selected,	and	gray	for	nonassociated	elements.	Light
gray	indicates	excluded	only	by	selection	in	the	same	field,	whereas	dark	gray
means	excluded	by	selection	in	other	fields.	We	can	see	that	the	current
selections	of	ARAge	as	31-60	Days,	Customers	as	A&R	Partners,	and	A2Z
Partners	and	AccountDesc	as	Communications	are	selected	and	highlighted	in
green.	If	we	look	at	the	Customer	dimension,	we	see	that	all	other	customer
names	are	dark	gray	because	a	customer	can	only	have	one	name	in	this	model.
We	also	see	that	the	other	ARAge	and	AccountDesc	dimension	elements	are



light	gray	because	they	are	excluded	based	on	selections	in	other	fields.	This
could	change	with	a	change	in	the	selection	criteria.	Based	on	this	example,
global	filtering	provides	a	very	powerful	view	of	the	relationships	in	the
application's	associative	data	model.	It	also	centralizes	filtering,	leaving	valuable
screen	real	estate	for	visualization	based	on	filtering	and	the	exploration	of
information,	and	once	selected,	it	appears	in	the	SELECTIONS	pane.

Global	Filtering

	

Now,	let's	turn	our	attention	to	the	Account	Receivables	Analysis	sheet.	This
sheet	is	an	interesting	example	of	where	there	are	no	formal	filter	panes	or
listboxes	(as	there	would	commonly	be	in	a	QlikView	app).	Instead,	each	of	the
objects	can	be	used	to	select	areas	to	explore,	and	global	filtering	and	global
search	can	be	used	to	augment	or	refine	the	selections	at	a	finer	detail	level.	In
this	case,	revenue	contribution	for	sales	representatives	by	channel	is	displayed.
Qlik	Sense	also	supports	a	full	range	of	objects,	such	as	the	table	object	to	the
right,	which	can	be	used	to	filter	columns	and	supports	exception	formatting	for
variance	reporting.



The	Account	Receivable	Analysis	sheet

	

Finally,	the	table	object	has	the	ability	to	hide	and	show	columns	based	on	the
allocated	space	for	the	table.	The	column	selection	menu	within	the	table	allows
Nora	to	orient	columns	based	on	the	viewable	space	available	to	the	table.



Product	Analysis

	



Extending	with	Library
As	noted	in	Chapter	1,	Qlik	Sense®	and	Data	Discovery,	the	rise	of	BI
consumerism	and	self-service	is	becoming	an	increasingly	important	attribute	to
meet	the	needs	of	the	next	generation	consumers.	Qlik	Sense	embraces	this
important	requirement	through	Library.	The	Qlik	Sense	Library	is	a	governed
area	where	an	application's	author	can	store	dimensions,	measures,	and
preconfigured	charts	that	can	be	used	to	create	compelling	analysis	that	can	be
shared	across	an	organization.	In	this	case,	Nora	is	taking	advantage	of	the
Customer	count	trend	line	chart	to	extend	an	application.

Qlik	Sense	Library

	

The	Qlik	Sense	Library	is	at	the	center	of	a	broad	range	of	governed	self-service
capabilities	that	drives	insight	within	an	organization.



Summary
This	chapter	covered	how	Qlik	Sense	meets	the	new	requirements	of	consuming
and	extending	discovery-based	applications,	meeting	these	requirements	across	a
myriad	of	platforms	spanning	PC,	Mac,	and	the	never-ending	flow	of	new
mobile	devices.	This	required	Qlik	Sense	to	be	built	with	a	new	approach	that	is
responsive	to	these	new	realities	of	self-service	and	mobile	use.

Now,	let's	turn	our	attention	to	the	contributor	who	seeks	to	not	only	consume
but	also	extend	and	share	their	data	discovery	insights.



Chapter	4.	Contributing	to	Data
Discovery
In	the	previous	chapter,	we	outlined	data	discovery	consumption	requirements,
which	provided	an	overview	of	key	Qlik	Sense	capabilities	for	users	who	wish	to
consume	an	application	that	is	prebuilt.	This	chapter's	goal	is	to	highlight	key
features	in	the	context	of	the	specific	user	requirements	that	Qlik	has	identified
as	being	needed	by	a	data	discovery	contributor,	or	someone	who	seeks	to	share
key	findings	from	their	analysis	in	a	governed	manner.

In	this	chapter,	we	will	cover	the	following	topics	of	Qlik	Sense:

Data	discovery	contributor	requirements
Bookmarks
Private	sheets
Private	stories
Publishing	to	an	existing	application



Realities	of	the	data	discovery
contributor
One	of	the	strengths	of	Qlik	Sense	applications	is	the	ability	to	share	and	extend
the	value	of	applications	with	other	members	of	the	stream.	As	noted	in	Chapter
2,	Overview	of	a	Qlik	Sense®	Application's	Life	Cycle,	there	are	a	number	of
useful	ways	to	share	key	business	discoveries.	These	include	the	following:

Bookmarks
Private	sheets
Stories

Each	of	these	capabilities	helps	analysts	not	only	to	consume	Qlik	Sense
applications	but	also	to	share	and	spur	additional	conversation	and	insights.	The
stream	administrator	covered	in	Chapter	9,	Administering	Qlik	Sense®,	enables
these	contributor	capabilities.	Let's	take	a	closer	look	at	each	of	these	capabilities
through	the	role	of	an	analyst	named	Pat.



Creating	private	bookmarks
A	private	bookmark	is	the	beginning	of	an	analysis	that	drives	collaboration
across	an	organization.	Bookmarks	allow	an	author	and	a	contributor	to	save	the
state	of	a	sheet	within	a	Qlik	Sense	application.	In	the	previous	example,	the
Executive	Dashboard	application,	the	author	defined	approved	bookmarks.
These	public	bookmarks	are	part	of	the	published	application	to	help	users	start
their	data	discovery	process.	This	capability	is	also	available	to	contributors	to
save	key	business	discoveries	for	a	later	time.

For	example,	say	Pat	conducts	a	sales	analysis	on	products	sold	in	key	cities,	as
shown	in	the	city's	sales	analysis	in	the	following	screenshot:

	

Pat	has	selected	six	key	cities	for	analysis	of	sales	representative	performance
and	products	sold.	This	view	is	interesting,	so	Pat	decides	to	bookmark	this	sheet
with	these	selections.	Note	that	when	selecting	the	bookmark	icon,	all	approved
and	saved	private	bookmarks	are	available	for	navigation.	Additionally,	the
Create	new	bookmark	button	is	available	and	will	automatically	create	a
default	title	based	on	the	sheet	name	and	selections:



City	sales	analysis	bookmark

	

Once	saved,	the	bookmark	becomes	a	part	of	the	application	under	My
bookmarks	and	can	only	be	accessed	by	the	creator,	which	in	this	case	is	Pat:



The	Executive	Dashboard	bookmark

	

To	summarize,	simple	Qlik	Sense	bookmarks	can	play	an	important	part	in
bringing	context	to	the	beginning	of	an	analysis	as	well	as	saving	key	insights
gained	from	an	analysis.	Although	separate	features,	Qlik	is	seeing	early
adopters	use	bookmarks	as	the	start	of	building	critical	mass	with	insight	that
can	be	shared	through	published	sheets	and	stories,	which	are	the	topics	of	our
next	sections.



Creating	and	sharing	private	sheets
As	discussed	in	Chapter	2,	Overview	of	a	Qlik	Sense®	Application's	Life	Cycle,
the	building	block	of	a	Qlik	Sense	application	is	a	sheet.	In	the	Executive
Dashboard	community,	we	can	see	the	sheets	associated	with	the	Executive
Dashboard	application.	These	include	Approved	sheets	(published	by	the
application	author),	My	sheets,	which	are	private	sheets	defined	by	the
contributor	(Pat),	and	finally,	Community,	which	are	private	sheets	published	by
other	contributors:

The	Executive	Dashboard	community

	

Now,	let's	dig	a	bit	deeper	into	how	these	sheets	are	built.	There	are	two	main
ways	in	which	private	sheets	are	built,	as	follows:

Duplicate	an	approved	sheet
Create	a	new	private	sheet

In	both	cases,	a	key	feature	that	allows	a	contributor	to	build	strongly	governed
private	sheets	is	the	Qlik	Sense	Library.	The	Qlik	Sense	Library	is	a	key
component	of	an	application	that	allows	the	author	to	expose	key	portions	of	the



associative	model	in	the	form	of	Dimensions,	Measures,	Charts,	and
predefined	Visualizations.	How	the	Qlik	Sense	Library	is	created	will	be
covered	in	more	detail	in	the	next	chapter.	The	following	screenshot	shows
Library,	which	can	be	searched	for	dimensions,	measures,	and	prebuild
visualizations:

	
Creating	a	private	sheet

Now,	let's	turn	our	attention	to	creating	a	private	sheet	by	the	first	method,



duplicating	an	existing	sheet,	and	then	editing	it	to	meet	your	requirements.	The
advantage	of	this	method	is	that	Pat	can	start	the	creation	of	her	product	analysis
based	on	the	approved	Product	Analysis	sheet.	The	process	begins	with
selecting	the	sheet	that	best	aligns	with	the	content	you	wish	to	analyze.	In	this
case,	Pat	wishes	to	create	a	product	analysis	that	integrates	the	inventory	on	hand
with	the	approved	Product	Analysis	sheet.	As	the	Product	Analysis	sheet	is	an
approved	sheet,	it	cannot	be	edited	and	must	first	be	duplicated	before	changes
can	be	made.

Duplicating	the	Product	Analysis	sheet

	

Once	the	sheet	is	duplicated,	it	is	automatically	converted	into	a	private	sheet,
where	Pat	can	rename	and	alter	the	content	and	layout	of	the	sheet	through	the
use	of	Library.	Note	that	Pat	has	renamed	the	sheet	to	Pat-Product	Analysis
as	well	as	added	a	helpful	description,	which	highlights	the	goals	of	this	sheet
—This	analysis	highlights	both	Revenue	by	Product	and	the	ability

to	fulfill	the	orders	(On	hand	Inventory$)	to	recognize	revenue.
Additionally,	there	is	a	wide	selection	of	preconfigured	charts	as	well	as
dimensions	and	measures	she	can	take	advantage	of	in	Library.	In	this	example,
Pat	will	replace	the	customer	count	line	chart	with	the	Onhand	Inventory	$



(sorted	by	Sales	Qty)	horizontal	bar	chart	from	Library.	This	is	one	example	of
a	variety	of	governed	changes	available	to	Pat	in	designing	a	new	sheet.	We	will
explore	the	breadth	of	changes	to	develop	private	sheets	in	the	next	section.

Creating	the	Pat-Product	Analysis	sheet

	

With	the	Onhand	Inventory	$	(sorted	by	Sales	Qty)	chart	from	Library
dragged	and	dropped	onto	the	sheet,	Pat	is	ready	to	end	the	editing	process.
Since	this	process	is	all	server-based,	there	is	no	need	to	save	the	sheet	but	rather
just	click	on	the	Done	button.	Additionally,	this	sheet	can	be	exported	as	a	PDF
and	then	either	distributed	via	e-mail	or	printed:



	

Export	the	sheet	to	PDF.	This	is	how	it	will	look:

The	Pat-Product	Analysis	sheet

	
Publishing	a	private	sheet



Now	that	the	sheet	is	complete,	let's	return	to	the	application	overview.	As	you
can	see	in	the	following	screenshot,	My	sheets	now	contains	a	new	sheet	called
Pat-Product	Analysis,	and	with	a	right-click,	it	is	ready	to	be	published	to	the
community:

Publishing	the	Pat-Product	Analysis	sheet

	

When	the	sheet	is	published,	a	new	section	will	appear	called	Published	by	me
that	contains	all	published	sheets	by	Pat.	Also,	note	that	Pat	has	a	number	of
sheets	that	are	in	progress	in	the	My	sheets	section.	These	published	sheets	can
be	duplicated	by	others	who	have	access	to	this	stream	and	are	extended	and
shared	as	well.



Pat's	sheets

	

In	summary,	a	duplicated	approved	sheet	is	an	excellent	way	to	start	the	creation
of	a	private	sheet	as	it	has	the	advantage	of	leveraging	the	existing	defined	sheets
from	the	published	application	or	the	work	of	other	analysts	in	the	community.
Now,	let's	turn	our	attention	to	creating	a	new	sheet.

Creating	a	new	sheet

A	second	approach	to	sharing	key	business	insights	is	to	create	a	new	sheet.	As
shown	in	Creating	a	New	Sheet	in	the	following	screenshot,	Pat	creates	a	new
sheet	called	Revenue	Pipeline	Analysis,	which	contains	both	order
information	and	inventory	on–hand	information	to	meet	customer	demand.	This
allows	Pat	to	create	and	share	new	information	across	the	organization:



Creating	a	new	sheet

	

Once	the	sheet	is	created,	Library	and	sheet	properties	are	exposed	and	the
sheet	appears	with	a	faint	grid.	This	grid	is	a	part	of	the	responsive	web	design
experience	and	facilitates	the	orientation	and	placement	of	objects	from
Library.	This	not	only	helps	in	the	creation	of	the	sheet	but	also	plays	a	key	role
in	how	the	objects	will	be	viewed	and	consumed	across	multiple	devices.	Also,
note	that	the	creation	and	assembly	of	new	objects	is	easily	done	by	users	due	to
the	associative	engine.	Because	of	the	associative	model,	every	object	is
connected	and	no	author	prewiring	is	required.	The	associative	engine	permeates
the	use	of	Qlik	Sense,	not	only	its	use,	but	also	the	creation	of	compelling
solutions.

Adding	a	predefined	visualization	to	a	new	sheet

One	of	the	key	areas	Pat	is	interested	in	is	the	customer	revenue	this	year	and	in
the	previous	year	to	help	her	better	anticipate	customer	demand.	Hopefully,	the
author	of	the	application	anticipated	this	common	request	and	stored	a	table
chart	under	Visualizations	in	Library.	Specifically,	the	Revenue	Analysis	table
chart	is	available	in	Library	with	a	thumbnail	shown	to	help	Pat	evaluate	its



applicability	to	the	sheet	content:

Adding	a	predefined	visualization	to	a	new	sheet

	

Adding	the	Revenue	Analysis	object	is	a	simple	drag	and	drop	movement.	Note
that	the	sheet	grid	will	automatically	make	recommendations	on	the	placement
of	the	object:



Drag	and	drop	the	object

	
Creating	a	Combo	chart	object

Once	the	object	is	placed,	Pat	notices	that	there	are	no	visualizations	available
that	allow	her	to	see	the	trend	of	inventory	on	hand	and	sales	orders.	This
requires	her	to	create	a	new	chart	based	on	dimensions	and	measures	defined	in
Library.	So,	to	begin	this	process,	Pat	selects	and	drags	Combo	chart	to	the
sheet	noted	in	the	following	screenshot:



Creating	a	Combo	chart	object

	

Once	the	Combo	chart	is	in	position,	the	object	guides	Pat	on	the	requirements
for	visualization.	The	object	highlights	the	requirement	of	at	least	one	dimension
and	a	measure.	To	speed	up	the	task,	the	Qlik	Sense	search	capability	can	be
used	to	find	the	dimension;	in	this	case,	Year	Month:



Adding	a	dimension

	

The	next	step	is	to	add	the	measures;	as	this	is	Combo	chart,	there	will	be	two
measures.	The	first	measure	added	will	be	Sales	Quantity.	The	Sales	Quantity
measure	is	available	in	Measures,	and	a	tooltip	reveals	the	expression	that
shows	how	it	is	defined:



Adding	a	Sales	Quantity	measure

	

Additionally,	as	the	measures	are	dragged	and	dropped	on	Combo	chart,	the
object	continues	to	guide	Pat	on	how	to	visualize	the	data.	Qlik	Sense	provides
guidance	to	add	the	inventory	quantity	and	options	for	display.	Combo	chart
supports	bar,	line,	and	marker	chart	types.	In	this	case,	Pat	selects	a	line	to
compliment	the	Sales	Quantity	measure	that	is	already	displayed	as	a	bar.	The
selection	of	charts	can	also	be	changed	quickly	while	keeping	the	defined
dimensionality	of	the	previous	chart:



Adding	the	Inventory	Quantity	measure

	

Finally,	Pat	completes	the	sheet	layout	by	adding	the	Onhand	Inventory	$
(sorted	by	Sales	Qty)	chart	available	in	the	Visualizations	portion	of	Library,
which	is	shown	as	follows:



Adding	the	Onhand	Inventory	$	(sorted	by	Sales	Qty)	chart

	
Publishing	a	private	sheet

With	the	new	Revenue	Pipeline	Analysis	sheet	completed,	Pat	is	ready	to
publish	with	a	right-click,	as	described	earlier.	Also,	it	is	worth	mentioning	that
this	assembled	sheet	is	fully	selectable	during	the	process	of	assembly,	and	no
wiring	(connecting)	of	these	objects	is	needed	to	allow	them	to	communicate
with	each	other	across	all	sheets:



Completed	Revenue	Pipeline	Analysis	sheet

	

Once	the	sheet	is	published,	it	is	available	to	the	Executive	Dashboard
application,	where	it	can	be	consumed,	duplicated,	and	expanded	by	other
members	of	the	community:



Published	Revenue	Pipeline	Analysis	sheet

	

In	summary,	creating	new	sheets	provides	an	alternative	way	to	collaborate	with
members	of	the	application's	community.	It	allows	contributors	in	a	governed
environment	to	start	with	a	blank	sheet	to	organize	and	share	their	thoughts	and
insights,	and	is	managed	centrally	in	the	Qlik	Management	Console.	Now,	let's
turn	our	attention	to	creating	a	Qlik	Sense	story,	which	adds	additional
capabilities	for	collaboration.



Creating	and	sharing	stories
Qlik	Sense	Stories	provide	an	additional	capability	to	collaborate	and	share
business	discoveries	within	the	Executive	Dashboard	community.	In	the	story
overview,	we	can	see	that	similar	to	bookmarks	and	sheets,	stories	have
Approved	stories	(defined	by	the	author	of	the	application),	My	stories	(private
and	only	viewable	by	the	author),	and	Community	(published)	sections.	We
covered	the	role	of	approved	stories	as	a	way	for	application	authors	to	provide
an	overview	about	the	application	and	intended	use.

In	this	section,	we	will	focus	on	the	creation	of	a	story	by	a	contributor	(Pat)
who	will	use	this	capability	to	present	a	sales	analysis	to	the	community:

Story	overview

	



Defining	a	story
To	begin	with,	Pat	creates	a	new	story	by	selecting	the	Create	new	story	option
under	My	stories.	The	default	name	is	My	new	story,	which	Pat	changes	to
Sales	Analysis	–	Pat	to	reflect	the	goal	of	the	story.	Additionally,	a
description	can	be	added	to	provide	information	on	the	goals	of	the	story:	

Defining	a	story

	

Once	the	story	is	defined,	Pat	enters	the	story	workspace,	which	provides	a
broad	set	of	tools	to	create	rich	presentations	that	are	dynamically	linked	to	the
Qlik	Sense	application.	The	story	workspace	contains	the	ability	to	create	sheets
as	well	as	access	the	following	libraries:

Snapshot
Text
Shape
Effect
Media

We	will	explore	each	of	these	areas	as	Pat	defines	her	presentation:	



Story	workspace

	
Creating	snapshots

Let's	start	with	creating	snapshots.	The	ability	to	create	a	snapshot	is	a	general
capability	found	on	all	sheets	within	an	application.	Snapshots	provide	analysts
like	Pat	with	the	ability	to	capture	insights	across	a	Qlik	Sense	application	and
organize	them	with	additional	context	through	stories.	By	selecting	the	camera,
all	objects	for	which	snapshots	can	be	created	are	highlighted	with	an	orange
outline.	Additionally,	each	object	also	contains	an	indicator	that	highlights	the
number	of	times	snapshots	have	been	created	for	the	object.	As	you	can	see,	Pat
has	been	quite	busy	in	selecting	key	objects	for	her	story:	



Creating	snapshots

	

Now	that	Pat	has	selected	her	snapshots,	she	prepares	to	organize	them	in	a
story.	Note	that	all	snapshots	are	stored	in	Snapshot	Library:	



Story	snapshots

	
Note

These	snapshots	are	organized	by	the	date	and	time	when	they	were	taken.	This
is	an	important	consideration	because	it	means	that	snapshots	are	like	photos,
storing	the	visualization	and	data	of	the	time	the	snapshot	was	taken.	By	design,
snapshots	are	not	updated	when	the	application	data	is	changed.

Once	the	snapshots	are	taken,	Pat	locates	the	shot	and	then	drags	and	drops	it
onto	the	grid.	Also,	note	that	each	snapshot	can	be	(unlocked)	edited	with	the
ability	to	modify	some	of	the	properties,	which	can	include	turning	on/off	titles
and	labels:	



Adding	a	snapshot

	
Adding	text

Now,	let's	add	text	to	this	sheet,	which	is	accomplished	through	Text	library.
The	Text	library	facilitates	both	the	creation	of	titles	as	well	as	paragraphs	that
can	be	used	to	add	comments	to	highlight	key	business	discoveries:	



Adding	text

	
Adding	shapes

Pat	has	added	the	title	High	Margin	Sales	and	emphasized	it	with	bold	and
underline	styles.	Additionally,	there	is	Shape	library,	which	allows	the
integration	of	various	shapes	to	highlight	and	emphasize	the	story:	



Adding	a	shape

	

Pat	chose	the	light	bulb	symbol	to	identify	key	ideas	in	this	story.	The	symbol's
default	color	is	black,	but	can	be	changed.	Additionally,	there	is	Effect	library,
which	can	be	used	to	highlight	the	lowest,	highest,	or	a	particular	value	within	a
chart:	



Adding	effects

	
Media	library

The	final	major	area	is	Media	library,	which	offers	contributors	the	ability	to
add	images	from	outside	Qlik	Sense.	Images	are	made	available	and	managed	by
the	Qlik	Management	Console	through	Content	library.	Additional	information
on	this	process	is	available	in	Chapter	9,	Administering	Qlik	Sense®.



Adding	media

	

Additionally,	Pat	would	like	to	add	a	portion	of	the	Sales	Analysis	application
directly	in	her	story.	Qlik	Sense	Stories	also	allow	an	approved	sheet	to	be
embedded	within	the	Sales	Analysis	story.	This	enables	Pat	to	share	her	analysis
through	a	number	of	slides	and	also	offers	the	viewer,	the	ability	to	continue
their	exploration	through	an	active	sheet.



Adding	a	dynamic	slide

	

Once	the	slides	are	completed,	Pat	can	review	how	the	slides	will	be	viewed	by
selecting	the	Play	the	story	button.	Also,	note	that	each	of	the	snapshots	has	an
embedded	bookmark	that	can	be	selected	by	right-clicking	on	View	source,	and
the	viewer	will	be	directed	back	to	the	application	sheet	to	continue	their
exploration:	



Final	review

	



Publishing	your	story
Now	that	Pat	is	comfortable	with	the	Sales	Analysis	story,	the	publishing
process	is	similar	to	the	publishing	process	of	private	sheets.	To	accomplish	this,
as	illustrated,	Pat	right-clicks	and	selects	Publish	to	move	the	story	to	the
community	and	make	it	read	only:

Publishing	the	story



Summary
One	of	the	strengths	of	Qlik	Sense	applications	is	the	ability	it	offers	contributors
to	actively	share,	collaborate,	and	extend	the	value	of	the	application	with
members	of	the	stream.	Qlik	Sense	has	a	number	of	exciting	ways	to	share	key
business	discoveries.	These	include	bookmarks,	published	sheets,	and	stories.
Each	of	these	approaches	is	highly	governed	and	provides	a	wide	range	of
capabilities	to	meet	the	needs	of	a	contributor.

In	the	next	chapter,	we	will	explore	using	the	skills	we	learned	alongside	some
ideas	of	best	practices	in	how	to	create	author-engaging	applications	for	Qlik
Sense.



Chapter	5.	Authoring	Engaging
Applications
In	the	previous	chapters,	we	looked	at	the	application	life	cycle	and	the	different
roles	of	users:	the	consumer	and	the	contributor.	Having	established	the	basic
requirements,	in	this	chapter	we	will	dive	into	the	details	of	app	creation	and
discuss	how	it	is	done.	We'll	also	look	at	best	practices	of	visualization	and	how
to	employ	them	using	Qlik	Sense.

In	this	chapter,	we	will	discuss	the	following	topics:

The	process	of	building	an	app
Data	connectors
The	data	model	viewer
Sheet	objects—visualizations
Best	practices
Migrating	QlikView	applications	into	Qlik	Sense



Preparations	and	requirements
Often	the	initial	step	in	building	an	app	is	that	you	have	some	data	that	you	want
to	analyze,	but	you	don't	necessarily	know	exactly	what	you	want	to	look	for	in
the	data.	As	a	business	user,	you	can—and	should—just	load	this	data	into	Qlik
Sense	and	start	developing.	Our	experience	is	that	the	best	way	to	develop	the
app	is	to	start	without	first	defining	the	requirements.

The	reason	is	that	when	you	load	data	and	start	to	create	visualizations,	you
learn	from	data.	This	knowledge	is	very	important	once	you	start	defining	what
you	want	to	analyze.	Hence,	you	should	first	develop	a	basic	app,	then	take	a
break	and	evaluate	what	you	learned.	Now	is	the	right	time	to	start	formulating
the	requirements.

Another	common	case	is	the	opposite	situation:	you	know	that	you	want	to
calculate	a	specific	KPI,	for	example,	supplier	efficiency,	but	you	don't
necessarily	know	what	data	you	need	to	be	able	to	do	this.	In	this	case,	you	need
to	start	with	some	research	about	where	to	find	the	relevant	information,	that	is,
in	which	database	and	in	which	tables.



The	requirement	specifications
If	you	define	a	larger	project,	you	will	use	what	you	know	as	a	starting	point	for
the	requirement	specifications	for	your	app.	The	following	questions	might	pop
up:

Data:	Which	data	sources	should	be	used?	Which	tables	should	be	used?
How	should	the	tables	be	linked?	Are	there	common	keys?	Is	there	more
than	one	source	for	the	transactions?	Are	there	tables	missing?	How	should
the	customer	hierarchy	be	resolved?
KPIs:	Which	calculations	should	be	made?	You	could	consider	turnover,
profit,	cost,	delivery	accuracy,	or	product	quality.	Which	definition	of	gross
margin	should	be	used?	How	should	the	given	discount	affect	the
calculation	of	a	salesman's	bonus?	Which	accumulations	are	needed:	year-
to-date	or	month-to-date?
Dimensions:	How	should	the	KPIs	be	displayed?	You	could	consider
showing	them	per	year,	per	customer,	per	salesman,	per	region,	or	per
product.	Which	comparisons	should	be	made:	year-over-year	or	month-
over-month?	Are	there	drill-down	hierarchies	that	need	to	be	defined?
Security:	Is	the	data	confidential?	Who	gets	to	see	what?	Can	we	allow
offline	usage?	Is	the	authorization	data	driven	or	static?	Do	we	need	to
include	authorization	information	in	the	data	model,	or	can	we	postpone	the
decision	around	security?

You	will	soon	realize	that	creating	the	requirement	specification	is	not	an	easy
task.



The	communication	problem
Discovering	exactly	what	users,	stakeholders,	and	sponsors	want	you	to	create	is
often	the	most	difficult	part	of	a	business	intelligence	project.	The
communication	between	IT	experts	and	nontechnical	business	users	is	often	full
of	misunderstandings	and	misinterpretations.	Business	users	often	don't	know
what	they	want	until	they	see	it,	and	they	frequently	can't	articulate	their
expectations	in	languages	that	IT	experts	use	to	design	systems.

Few	business	users	will	know	what	a	data	model	really	means,	so	expecting
them	to	be	able	to	exactly	define	the	requirements	in	technical	terms	is	futile.
Experienced	authors	can	extract	this	information	through	discussions	and	clever
questioning,	but	the	number	of	people	who	are	able	to	do	this	within	an
organization	is	limited.

IT	professionals	often	frame	their	requirement	questions	in	technical	language,
for	example,	"Which	table	in	the	database	should	be	used?"	or	"Which	fields
should	be	used	to	calculate	the	KPI?".	However,	business	users	may	not	have	the
technical	knowledge	to	respond	to	these	questions.	Business	users	often	explain
their	expectations	in	a	technically	vague	language,	which	is	not	specific	enough
for	designers	to	develop	solutions.

On	the	other	hand,	the	business	user	is	the	customer.	The	very	reason	why	we
develop	an	app	in	the	first	place	is	to	supply	the	business	user	with	a	tool	to
analyze	and	learn	from	data.	So,	the	requirement	specifications	must	focus	on	the
business	user.



A	step-wise	implementation
The	solution	to	this	communication	problem	is	to	use	a	step-wise
implementation,	where	the	app	developer	iteratively	finds	the	requirements,
develops	the	app	further,	tests	what	has	been	done,	and	finally	evaluates	the	app
together	with	the	business	user.	The	evaluation	will	lead	to	new	requirements
and	to	changes	or	refinements	of	the	old	requirements.	The	steps	must	be	small
and	the	typical	cycle	is	hours	or	days.

In	other	words,	you	discover	the	requirements	together	with	the	business	user.
As	the	development	proceeds,	the	app	will	converge	to	the	needs	of	the	business
user.

The	iterative	development	process

	

This	means	you	cannot	begin	your	app	development	with	a	detailed	requirement
specification.	Rather,	you	should	start	with	a	very	basic	specification	containing
information	about	some	of	the	needed	data	sources	and	ideas	of	some	of	the
required	visualizations.

Hence,	irrespective	of	whether	you	are	a	business	user	or	an	app	developer
responsible	for	data	modeling	and	difficult	formulas,	you	should	start	by
spending	an	hour	or	so	to	load	the	data	and	create	some	graphs	with	the	goal	to



learn	from	data.	Then,	you	are	in	a	much	better	position	to	define	or	discuss
requirements	further.



The	process
The	first	step	in	building	the	app	is	to	load	the	data.	The	data	can	be	one	single
table	or	several	tables	linked	logically	by	key	fields.	Key	fields	are	fields	that
exist	in	more	than	one	table	and	link	rows	in	one	table	with	rows	in	another.
Together,	they	form	a	data	model.	The	next	chapter	will	discuss	the	data	model,
so,	for	the	moment,	we	will	not	get	into	the	details	of	this.

When	you	have	a	data	model,	you	can	start	building	the	layout,	which	consists	of
different	objects,	for	example,	lists,	graphs,	tables,	and	filter	panes,	placed	on
different	worksheets.	The	objects	can	contain	formulas	that	define	different
calculations	that	will	be	calculated	as	the	users	make	their	selections.

The	previously	explained	development	model	assumes	that	you	have	both	a
developer	and	a	business	user	that	participate	in	the	development	process.	In	real
life,	you	will	notice	that	the	initial	development	efforts	will	usually	be	like	this,
but	as	the	app	takes	shape,	the	business	users	will	want	to	do	more	and	more	on
their	own—which	is	good.	After	all,	the	goal	is	to	have	business	users	who	are
self-sufficient	and	create	apps	as	much	as	possible	on	their	own.



Getting	started	with	the	app	creation
When	you	first	open	Qlik	Sense,	you	come	to	the	hub.	This	is	the	place	where
you	have	an	overview	of	all	your	apps.	The	hubs	look	slightly	different	in	the
Desktop	and	Server	versions,	but	they	are	essentially	the	same.	The	following
screenshot	shows	what	a	hub	looks	like:	

The	Qlik	Sense	hub

	



Creating	a	new	app
In	Qlik	Sense	Desktop,	you	are	greeted	with	a	dialog	that	asks	you	to	create	an
app	as	shown	in	the	following	screenshot.	In	the	Qlik	Sense	server,	you	will	find
the	corresponding	functionality	on	a	button	labeled	CREATE	NEW	APP	in	the
toolbar:

The	Qlik	Sense	Desktop	welcome	dialog

	

Creating	an	app	means	you	will	create	an	entity	that	will	hold	both	the	data	and
everything	else	needed	to	analyze	it.	In	Qlik	Sense	Desktop,	this	is	a	file	created
in	C:\Users\User\Documents\Qlik\Sense\Apps.



Loading	your	data
Once	you	have	named	and	opened	your	app,	you	will	get	a	screen	where	Qlik
Sense	asks	you	to	load	your	data:

The	Get	started	screen

	

When	you	have	this	option	before	you,	you	can	load	data	in	several	different
ways.	The	Add	data	command	to	the	left	will	start	with	a	wizard	that	helps	you
define	what	you	want	to	load.	In	the	background,	it	adds	code	to	a	script	that
defines	the	load	sequence.	It	will,	however,	never	show	the	script.

This	is	different	from	Data	load	editor	that	will	take	you	to	a	script	editor,
where	you	can	change	the	script	directly.

The	easiest	way	is	to	use	Add	data	dialog	to	the	left.	This	will	open	the	Add
data	dialog	where	you	can	define	a	data	source;	either	a	database	table	or	a	file,
for	instance,	an	Excel	spreadsheet.



The	Add	data	dialog

	

Use	Connections	for	folders	and	connections	that	you	have	previously	used,	and
use	Connect	my	data	if	it	is	a	new	data	source.	In	this	dialog,	you	can	select
your	database	table	or	browse	your	way	to	a	file	containing	a	table.

Selecting	a	file	will	open	a	file	wizard	where	you	can	tweak	the	details	of	how
the	file	should	be	loaded	so	that	you	get	the	data	you	want,	as	shown	in	the
following	screenshot:



The	file	wizard

	

You	can	specify	the	file	type,	whether	the	file	contains	empty	lines	at	the	top
(before	the	data	starts),	whether	the	first	line	contains	the	field	names	or	not,	and
so	on.	Make	sure	you	get	all	the	settings	right	before	you	click	on	Load	and
finish.	If	it	is	the	first	table	you	load,	you	don't	need	to	use	the	Profile	button.
The	next	section	explains	where	we	load	additional	tables.

Clicking	on	Load	and	finish	will	store	your	settings	and	load	the	data;	if
everything	goes	well,	you	will	get	a	message	that	the	data	was	loaded
successfully.	At	this	stage,	you	can	either	start	to	edit	the	sheet	or	close	the
dialog	and	perhaps	load	additional	tables.



Loading	additional	tables
It	is	very	common	that	you	want	to	analyze	data	that	is	stored	in	several	different
tables.	For	example,	you	could	have	four	tables:	one	table	for	the	orders	(one
row	per	order),	one	table	for	the	customers	who	placed	the	orders	(one	row	per
customer),	one	table	for	the	order	lines	(one	row	per	order	line),	and	one	table
for	the	products	(one	row	per	product).

For	such	a	case,	the	Orders	table	will	contain	a	field	that	specifies	the	customer
that	placed	the	order—a	customer	ID.	In	the	same	way,	the	Order	Lines	table
will	contain	a	field	that	points	out	which	order	the	record	belongs	to,	an	order
ID,	and	another	field	that	tells	which	product	the	record	refers	to,	a	product	ID.
Such	fields	are	called	keys,	and	Qlik	Sense	uses	these	to	link	the	tables	and	make
sense	of	the	data.

This	way,	all	four	tables	are	linked	logically,	as	shown	in	the	following	picture:

A	simple	data	model	made	from	four	tables



	

To	obtain	this	data	model	in	your	app,	you	need	to	repeat	the	procedure	for
loading	data	that	we	discussed	previously	for	each	additional	table.	You	can	then
open	the	Add	data	dialog	from	one	of	the	menus	to	the	left	in	the	toolbar.	This
will	take	you	to	the	familiar	file	wizard	shown	in	the	previous	section,	where
you	can	define	the	file	properties	of	the	additional	table.

Optionally,	you	can	also	go	through	the	profiling	step,	which	helps	you	define
the	keys.	The	profiling	looks	at	the	field	values	and	compares	these	with	those	of
the	previously	loaded	fields.	When	this	is	done,	it	suggests	which	fields	to	use
(or	not	to	use)	as	links,	and	renames	these	fields	appropriately	so	that	they
become	keys	in	your	data	model:

The	profiling	wizard

	

The	next	chapter	will	explain	more	in	detail	about	data	modeling	and	what	you
should	think	about	when	loading	several	tables.



Using	the	Data	load	editor
On	the	screen	where	Qlik	Sense	asked	you	to	load	your	data,	there	was	a	second
option,	Data	load	editor.	Clicking	on	this	option	will	open	a	new	tab	with	a
script	editor,	as	shown	in	the	following	screenshot:

The	Qlik	Sense	Data	load	editor

	

This	editor	is	very	similar	to	the	QlikView	script	editor.	It	allows	you	to	make
very	complex	data	transformations	and	basically	load	and	transform	any	table.
However,	as	with	all	powerful	tools,	it	is	also	easy	to	make	mistakes.	Use	it	with
caution.

When	you	define	your	data	using	the	Add	data	command,	the	data	load
sequence	will	be	stored	in	the	load	script	as	one	or	several	Load	statements.	This
means,	these	can	be	edited	in	Data	load	editor	under	the	Auto-generated
section,	if	you	want	to	tweak	them	after	they	have	been	created.	The	section
must,	however,	first	be	unlocked:



	

You	can	also	create	your	script	from	scratch	using	Data	load	editor.	If	so,	you
must	first	create	your	data	connections.	These	can	be	file	folders,	connections	to
regular	databases,	or	connections	to	other	data	sources	using	other	connectors.

This	is	how	you	do	it:	open	the	Data	load	editor	from	the	initial	dialog	or	the
menu	in	the	toolbar:

The	Data	load	editor	command

	
Tip

Clicking	on	the	icon	to	the	right	in	the	menu	will	open	the	dialog	in	a	new	tab.

Now,	you	will	have	Data	load	editor	open.	To	the	right,	you	have	the	Data
connections	panel.	If	you	click	on	the	Create	new	connection	button,	you	will
open	a	menu,	where	you	can	choose	the	connection	type	and	then	specify	the
properties	of	the	connection	in	the	subsequent	dialog:



Adding	a	data	connection

	



Creating	a	database	connection
If	you	want	to	create	a	database	connection	using	Open	Database	Connectivity
(ODBC),	you	should	choose	ODBC.	This	opens	the	ODBC	connection	dialog,
where	you	can	choose	the	data	source	to	be	used:

The	ODBC	connections	dialog

	

The	data	sources	that	you	see	are	the	ones	defined	in	the	Windows	operating
system.	This	means	if	you	do	the	development	on	a	server,	the	list	is	limited	to
those	defined	by	the	server	administrator.

Once	you	have	created	these	connections,	you	will	have	them	displayed	in	a	list
of	data	connections,	as	shown	in	the	following	screenshot:



The	list	of	data	connections

	

Database	connections,	for	example,	the	ODBC	connection	in	the	preceding
screenshot,	have	three	icons.	The	left	one	creates	a	Connect	statement,	the
middle	one	creates	a	Select	statement,	and	the	right	one	edits	the	connection
itself.	Folder	connections	only	have	two	icons.	The	left	one	creates	a	Load
statement	and	the	right	one	edits	the	connection	itself.

Hence,	to	create	a	Load	statement,	you	should	click	on	the	left	icon	for	a	folder
connection	and	find	the	file	that	contains	the	table.	This	way,	you	can	create	a
script	in	very	much	the	same	way	as	you	would	in	QlikView,	if	you	are	familiar
with	it.

When	you	have	created	the	script,	you	need	to	run	it	to	load	the	data.	This	is
done	by	clicking	on	the	Load	data	button	in	the	toolbar	of	Data	load	editor.



Data	connectors
As	you	have	seen,	Qlik	Sense	can,	in	addition	to	loading	data	from	files,	connect
to	databases	using	the	ODBC	and	OLEDB	interfaces.	To	see	which	databases
you	can	connect	to,	you	need	to	open	Data	load	editor	and	click	on	Create	new
connection.

When	you	select	OLEDB	and	then	Select	provider,	you	will	see	a	list	of	the
installed	OLEDB	providers.	If	your	database	isn't	listed,	you	need	to	install	the
appropriate	software	from	your	database	provider.

If	you	choose	ODBC,	you	will	see	the	defined	data	sources.	However,	you	may
still	have	drivers	installed	for	which	there	are	no	data	sources	defined.	To	find
out	whether	this	is	the	case,	you	must	open	ODBC	Administrator	in	Windows
and	look	in	the	Drivers	tab	(as	shown	in	the	following	picture).	If	your	database
isn't	listed,	you	need	to	install	the	appropriate	software	from	your	database
provider:

The	Windows	ODBC	Administrator

	
Tip



The	default	ODBC	administrator	is	opened	by	navigating	to	Control	Panel	|
Administrative	tools	|	Data	Sources	(ODBC)	in	Windows.	However,	on	a	64-
bit	OS,	you	may	also	want	to	use	32-bit	drivers.	To	manage	these,	you	need	to
open	C:\Windows\SysWOW64\odbcad32.exe.

Once	the	ODBC	driver	is	installed,	you	need	to	define	a	data	source.	We
recommend	that	you	do	this	on	the	System	DSN	tab	in	ODBC	Administrator.
When	this	is	done,	the	data	source	will	appear	in	the	Qlik	Sense	ODBC	dialog.

You	can	also	use	custom	connectors	with	Qlik	Sense,	such	as	the	Salesforce
connector	(as	shown	in	the	next	picture)	that	you	can	download	from	the	Qlik
download	page.	These	should	be	put	in	C:\Program	Files\Common
Files\Qlik\Custom	Data.	They	will	then	appear	in	your	list	of	connectors:

The	list	of	connectors,	including	two	custom	connectors

	



The	analysis	interface—sheets	and
visualizations
Once	you	have	loaded	the	data	into	Qlik	Sense,	it	is	time	to	create	the
visualizations	in	the	analysis	user	interface.	A	basic	set	of	sheets	and
visualizations	should	normally	be	supplied	by	the	application	developer,	and
additional	ones	can	be	created	by	the	users	themselves.



Creating	a	sheet
When	you	have	loaded	the	data,	Qlik	Sense	will	usually	create	the	sheet	for	you,
and	take	you	there.	So,	if	you	see	a	big	blank	area	with	the	text	The	sheet	is
empty,	you	can	skip	to	the	next	section:	

But	if	you	are	still	in	the	Load	editor,	you	may	need	to	perform	the	following
steps	to	create	a	sheet:

1.	 Go	to	App	overview	using	the	command	in	the	top-left	menu	as	shown	in

the	next	picture:	

The	App	overview	command

In	App	overview,	you	can	create	your	first	sheet	by	clicking	on	the	sheet
placeholder	to	the	left,	or	on	the	button	to	the	right:	



The	Create	new	sheet	button

Name	it	and	hit	Enter.	You	have	now	created	an	empty	sheet	and	need	to	put
some	visualizations	on	it.
Click	on	the	newly	created	sheet.



Adding	visualizations
At	this	stage,	you	are	probably	looking	at	an	empty	sheet	with	the	text	The	sheet
is	empty	located	in	the	middle.

Click	on	the	Edit	button	to	the	right	in	the	toolbar	to	start	adding	things.	Doing
so	will	open	the	Assets	panel	to	the	left	listing	a	number	of	object	types:	Bar
chart,	Combo	chart,	Filter	pane,	and	so	on.	Now,	you	can	drag	and	drop	an
object	type	onto	your	sheet,	thereby	creating	such	an	object.	If	you,	for	instance,
drag	a	bar	chart	onto	the	sheet,	you	will	create	an	empty	bar	chart:	

	

Depending	on	where	you	drop	it,	it	will	use	all	of	the	sheet	or	just	half	the	sheet.
Move	the	object	around	before	you	drop	it,	and	you'll	see.	You	can	also	adjust	its
size	at	a	later	stage.

Once	you	have	dropped	it,	the	bar	chart	will	clearly	show	that	it	needs	a
dimension	and	a	measure	in	order	to	display	properly.	You	can	click	on	the
buttons	on	the	bar	chart	to	define	these,	but	you	can	also	use	the	Assets	panel	on
the	left.



The	Assets	panel	shows	object	types,	but	if	you	look	carefully,	you	will	see	that
there	are	three	tabs	at	its	top—one	for	object	types,	one	for	fields,	and	one	for
the	predefined	library	entities.	So,	if	you	click	on	the	middle	icon,	you	will	see	a
list	of	fields	that	can	be	used	as	dimensions	or	as	measures:	

The	Assets	panel	now	shows	a	list	of	fields

	



Adding	dimensions	and	measures
You	can	now	drag	and	drop	fields	onto	the	bar	chart,	thereby	creating	the
dimension	and	the	measure.

A	dimension	is	a	field	with	discrete	values,	for	example,	customer,	product,	or
month.	A	chart	will	create	one	number	per	dimensional	value;	hence,	a	bar	chart
will	create	one	bar	per	distinct	value	in	the	chosen	field.

A	measure	is	usually	a	number,	for	example,	sum	of	sales	or	number	of	orders,
and	this	will	constitute	the	height	of	the	bars.

When	you	drag	a	field	onto	the	empty	bar	chart,	Qlik	Sense	will	ask	you	what
you	want	to	do	with	this	field.	You	can	add	it	(as	a	dimension),	or	you	can	use	it
inside	an	aggregation	function	(Sum(),	Count(),	or	Min())	to	form	a	measure:

Adding	measures

	



Defining	bar	charts
When	you	have	added	both	dimension	and	measure,	the	bar	chart	will	appear	as
shown	in	the	next	screenshot.	To	the	right,	you	will	have	the	properties	of	the	bar
chart,	where	you	can	set	its	properties—the	sort	order,	the	colors,	and	so	on.	You
can	also	define	the	dimension	and	the	measure	directly	in	the	chart	properties:	

	

To	see	the	final	result,	you	need	to	click	on	Done	in	the	toolbar,	which	takes	you
back	to	fullscreen.

Clicking	on	the	Save	button	in	Qlik	Sense	Desktop	will	save	the	application	as	a
file	with	the	extension	.qvf	in	the	application	folder	(C:\Users\
<user>\Documents\Qlik\Sense\Apps).	The	file	contains	both	data	and	script
and	it	can	be	imported	to	other	Qlik	Sense	installations.	However,	you	may	need
to	adjust	the	script	so	that	it	runs	from	the	new	location.

When	you	are	done	with	the	bar	chart,	you	should	click	on	Save	and	start
creating	your	next	visualization.



In	the	Server	version	of	Qlik	Sense,	you	don't	have	a	Save	button.	The	changes
are	saved	automatically.



Storytelling
An	exciting	feature	in	Qlik	Sense	is	storytelling.	Storytelling	is	basically	a
presentation	mode,	where	you	can	first	prepare	a	presentation—like	a	slide	show
—and	then	present	it.	Storytelling	is	also	an	excellent	way	to	present	an
application	and	create	an	overview	of	its	content.

When	you	create	an	application,	you	can—in	addition	to	the	normal	application
development	of	course—also	create	a	story	that	can	be	used	by	anyone	who	uses
the	application.	However,	we	believe	that	the	more	common	use	case	is	that
stories	will	be	created	not	by	the	application	developer,	but	rather	by
contributors—power	users	who	choose	to	add	elements	to	the	application.
Hence,	storytelling	is	described	in	Chapter	4,	Contributing	to	Data	Discovery.



The	application	library
As	previously	mentioned,	the	Assets	panel	can	show	object	types	and	fields.
However,	it	has	a	third	tab	for	predefined	library	entities.	If	you	click	on	this	tab,
you	will	see	the	application	library:	

	

The	library	contains	entities	that	have	been	predefined	and	that	can	simplify	the
Qlik	Sense	usage	for	a	business	user.	Dimensions,	measures,	or	entire
visualizations	can	be	stored	in	the	library.

You	do	not	need	to	use	the	library—nothing	has	to	be	predefined	for	Qlik	Sense
to	work.	However,	if	you	want	to	reuse	formulas	or	you	have	a	situation	where
your	task	is	to	deliver	an	app	to	a	business	user,	it	is	a	good	idea	to	use	the
library.



Which	fields	should	be	exposed?
Often,	you	have	many	fields	in	an	app,	of	which	maybe	only	a	few	should	be
exposed	as	dimensions.	Then,	you	should	use	the	library	to	define	the	fields	that
are	appropriate	as	dimensions,	and	name	them	in	a	way	that	they	can	be	easily
understood.

A	dimension	can	also	be	a	group	of	fields	that	is	exposed	as	a	drill-down	group.
It	can	also	be	a	formula	using	an	Aggr()	function	that	defines	an	array	of	values.
In	both	these	cases,	it	is	a	good	idea	to	define	the	dimension	in	the	library.



Defining	KPIs
Measures	are	formulas	that	define	KPIs	and	other	numbers	relevant	for	the
analysis.	These	are	often	used	in	multiple	places	in	an	app,	so	it	is	convenient	to
store	the	definition	in	one	place	only.	Then,	should	you	want	to	change	the
definition,	you	need	to	do	it	in	the	library	only.	Also,	this	is	a	way	to	ensure	that
there	is	only	one	version	of	the	truth.



Creating	library	entries
Library	entries	can	be	created	in	several	different	ways.	The	most	obvious	way	is
to	enter	the	library	and	click	on	the	Create	new	button.

An	alternative	way	is	to	do	it	from	Data	model	viewer.	Here,	you	can	mark	a
field	and	click	on	the	Preview	button	(in	the	bottom-left	corner	of	the	screen).
You	have	the	option	of	adding	the	field	as	dimension	or	measure.

Whichever	way	you	choose	to	use	when	you	create	your	dimension,	you	will	see
the	following	dialog	where	you	define	your	dimensions:



The	Create	new	dimension	dialog

	

When	you	create	a	measure,	you	will	see	the	following	dialog.	Make	sure	that
you	have	an	aggregation	function,	for	example,	Sum(),	Count(),	or	Min(),
wrapping	the	field	reference:



The	Create	new	measure	dialog

	

Visualizations	can	only	be	entered	into	the	library	by	the	use	of	drag	and	drop,	so
you	need	to	have	created	the	visualization	on	the	sheet	first.



Best	practices	in	data	visualization
In	the	new	world	of	ever	increasing	data	volumes,	the	ability	to	visually
communicate	insights	from	data	is	an	important	skill	set.	Both	the	structure	of	an
app	and	the	chosen	visualizations	affect	how	data	is	perceived.

An	app	can	contain	many	sheets,	and	the	order	of	the	sheets	and	what	you	put	in
them	is	the	first	consideration.	The	best	practices	can	be	summarized	in	three
words:	dashboard,	analysis,	and	report	(DAR).



Dashboard
The	dashboard	is	where	the	high-level	perception	takes	place.	It	is	usually	the
first	sheet	or	the	landing	page,	and	it	should	give	just	the	most	important
information	and	have	the	least	amount	of	interactivity.	Its	main	purpose	is	to
help	users	get	an	overview	and	scan	for	status	changes.	The	users	can	see	at	a
glance	whether	things	are	working	or	not.	It's	a	starting	point,	such	as	a	table	of
contents;	the	user	gets	an	idea	of	what	is	available	and	then	heads	off	to	other
parts	of	the	app	based	on	what	they	have	seen.

Some	advice	on	dashboards:

Display	data	only	on	a	high	level
Don't	use	too	many	KPIs
Use	no	or	very	few	filtering	options
The	most	important	information	should	be	large



Analysis
The	analysis	pages	should	be	more	interactive:	they	should	help	users	explore
the	data	and	look	for	answers	to	questions	they	may	have	formed	on	the
dashboard	page.	Analysis	pages	are	where	the	user	spends	time	and	interacts
with	the	data.	Typically,	each	sheet	has	a	theme	and	covers	a	specific	aspect	of
the	business.	The	analysis	pages	are	where	the	user	learns	from	data.

Some	advice	on	the	analysis	pages:

Allow	filter	panes	or	listboxes	to	facilitate	selections
Make	sure	an	entire	page	is	about	a	particular	topic
Use	graphs



Reporting
The	third	type	of	sheet	is	the	reporting	sheet.	It	is	not	always	necessary	to	have
these,	but	often	it	is	advantageous	to	gather	the	most	granular	information	on
dedicated	sheets.	This	is	the	purpose	of	the	reporting	sheets:	to	give	the	most
granular	information	with	tabular	data.	This	is	where	a	user	can	spend	a	lot	of
time	sorting	and	filtering	through	the	details.

Further,	users	sometimes	want	to	export	or	print	data,	and	the	starting	point	is
often	a	reporting	sheet.	All	Qlik	Sense	objects	can	be	printed	or	exported,	either
as	images,	as	data,	or	bundled	in	a	PDF	document.

Some	advice	on	the	reporting	sheets:

Display	transactional	data	in	tabular	form
Give	the	users	the	ability	to	view	every	detail,	so	they	can	assess	what
actions	they	need	to	take



Structuring	a	sheet
The	structure	within	a	sheet	is	also	important.	When	you	create	an	app,	it's	your
job	to	prioritize	information	and	display	it	in	such	a	way	that	users	better
understand	the	data	and	find	their	way	in	the	app.

The	human	eye	scans	most	content	in	an	F	pattern.	The	first	time	we	see	a	page,
we	read	the	first	line,	then	a	bit	of	the	second	line,	and	then	work	our	way	down
the	left-hand	side	of	a	page	looking	for	keywords.	This	means	the	content	at	the
top	of	the	page	is	the	most	important	real-estate	on	a	page,	especially	the	top-
left.	The	top	of	the	sheet	gives	the	users	an	idea	of	what	content	a	page	may
contain	and	the	scent	of	whether	or	not	they	are	on	the	right	track	to	finding	what
they	are	looking	for.	So,	label	the	sheets	appropriately.

It	is	also	important	that	users	easily	find	objects	they	are	looking	for.	This
applies	to	filter	panes	and	listboxes,	where	the	user	makes	selections.	If	used	in
several	sheets,	they	should	be	placed	in	the	same	place	in	all	sheets,	if	possible.
Further,	given	how	a	human	eye	scans	the	page,	these	objects	should	preferably
be	placed	to	the	left.



Graphs	and	other	visualizations
Visualization	also	includes	choosing	appropriate	graphs.	Getting	the	graph	right
is	important;	otherwise,	the	data	can	be	misinterpreted.	There	are	several	highly
regarded	thought	leaders	who	have	written	excellent	reading	material	on	this
topic,	for	example,	Edward	Tufte	and	Stephen	Few.	If	you	have	not	read	any
book	in	this	area	and	you	intend	to	build	business	intelligence	applications,	we
recommend	that	you	do	this.	It	will	help	you	in	your	work.



Dimensions	and	measures
Dimensions	and	measures	are	sometimes	confused	for	one	another,	but	it	is
really	quite	simple.	You	should	start	by	asking	yourself,	"What	do	I	want	to
show?".	The	answer	is	usually	sales,	quantity,	or	some	other	number.	This	is
your	measure.

The	second	question	you	should	ask	yourself	is,	"How	many	times	should	this
measure	be	calculated?"	or	"Per	what	do	I	want	to	show	this	measure?"	The
answer	could	be	once	per	month,	once	per	customer,	once	per	supplier,	or
something	similar.	This	is	your	dimension.

The	dimension	and	the	measure	of	a	chart	are	the	core	of	the	visualization	and
often	indicate	what	visualization	to	choose.	It	is	important	to	understand	which
type	of	field	is	used	as	a	dimension.	For	example,	when	showing	trends	over
time,	you	should	usually	use	a	line	chart	or	a	bar	chart.	The	same	is	also	true	for
any	dimension	with	an	implicit,	intrinsic	order.	By	the	same	token,	you	should
never	use	a	line	chart	unless	the	dimension	has	an	implicit	order.

The	fields	used	as	dimensions	can	be	classified	into	the	following	groups:

Nominals:	These	are	fields	with	qualitative	values	that	lack	intrinsic	order,
for	example,	product,	customer,	color,	gender,	and	so	on.
Ordinals:	These	are	fields	with	qualitative	values	that	have	intrinsic	order,
for	example,	ratings	such	as	unsatisfied,	neutral,	or	satisfied;	that	is,	fields
that	have	no	numeric	meaning.
Intervals:	These	are	fields	with	quantitative	values	that	lack	a	natural	zero.
They	are	like	coordinates,	for	example,	date,	time,	longitude,	temperature,
and	so	on.
Ratios:	These	are	fields	with	quantitative	values	that	have	a	natural	zero.
They	are	like	amounts,	for	example,	quantity,	sales,	profit,	weight,	and	so
on.

With	this	classification	in	mind,	it	is	easier	to	describe	what	you	can	and	cannot
do	with	some	graph	types.

The	bar	chart



The	most	common	visualization	is	the	bar	chart.	Bar	charts	can	be	used	for
almost	any	dimension,	and	it	is	easy	to	compare	the	sizes	of	two	bars.	Further,
they	are	good	for	ordinal	data,	since	the	intrinsic	order	can	be	used.	This	also
means	that	trends	over	time	can	easily	be	spotted.

If	a	second	measure	is	added	to	the	bar	chart,	you	will	get	two	bar	series	so	that
you	can	make	comparisons	both	between	the	measures	and	along	the	dimension.
For	example,	in	the	following	chart,	you	can	compare	not	only	the	sales	regions,
but	also	the	commercial	vehicle	sales	with	total	sales:

	

A	bar	chart	is	often	the	best	visualization.	By	adding	a	second	measure	or	a
second	dimension,	you	can	get	several	series	of	bars.

The	pie	chart

The	next	visualization	is	the	pie	chart.	This	should	only	be	used	if	the	dimension
is	of	the	nominal	type	and	you	want	to	display	the	relative	proportions.	Pie
charts	are	not	good	for	ordinal	data,	since	the	order	of	the	dimensional	values
isn't	obvious.



Pie	charts	are,	by	some	experts,	considered	a	poor	visualization,	and	a	bar	chart
is	indeed	often	a	better	alternative	since	it	conveys	the	information	more
efficiently.

But	pie	charts	are	still	useful	to	convey	an	overview	of	the	relative	sizes.	For
instance,	in	the	following	pie	chart,	you	can	clearly	see	that	the	combined	sales
in	the	USA	and	China	constitute	more	than	50	percent—something	that	is	not	at
all	clear	if	you	instead	look	at	the	corresponding	bar	chart:

	

Hence,	a	bar	chart	is	often	easier	to	read,	but,	in	this	case,	the	pie	chart	is	better
at	showing	the	relative	proportions	of	the	largest	countries.	However,	it	can
sometimes	be	hard	to	judge	the	relative	sizes	of	the	slices	in	a	pie	chart	if	there	is
only	a	small	difference	between	them.	Then,	a	bar	chart	is	a	better	choice.

The	line	chart

The	next	visualization	is	the	line	chart.	This	should	only	be	used	if	the	first
dimension	is	of	the	ordinal	or	interval	type.	Line	charts	are	particularly	useful	for
showing	a	change	over	time.	Several	lines	can	be	used,	either	using	a	second
dimension	or	by	adding	measures:



	

Line	charts	are	good	when	you	want	to	analyze	trends	over	time.

The	KPI	object

A	new	object	in	Qlik	Sense	is	the	KPI	object.	With	this,	you	can	display	a
measure	or	a	KPI	on	a	dashboard	and	label	it	so	that	it	is	clear	what	it	is:

	

This	allows	you	to	create	an	overview	so	the	user	quickly	and	easily	sees	the
main	information.	But	you	cannot	show	the	number	over	a	dimension,	for



example,	per	month	or	per	customer,	since	there	is	no	dimension	in	this	object.	It
is	just	a	number	that	is	valid	for	the	entire	selected	dataset.

The	gauge

The	gauge	object	is	similar	to	the	KPI	object,	in	that	it	shows	a	measure	and	has
no	dimension.	It	should	be	used	the	same	way	as	the	KPI	object—to	create	an
overview.

	

The	difference	with	a	KPI	object	is	that	a	gauge	can	also	show	a	basic	graphical
element—either	a	radial	display	like	a	speedometer	or	a	linear	display	like	a
thermometer.

The	scatter	chart

Scatter	charts	are	good	if	you	want	to	compare	two	different	quantitative
measures	for	the	same	dimension,	that	is,	pairs	of	data	per	some	dimension.	Such
plots	are	useful	to	find	clusters	of	values,	linear	arrangements,	gaps,	and	values
that	are	much	different	from	the	norm.	These	are	the	kinds	of	patterns	that	are
meaningful	in	correlation	relationships.

The	unique	strength	of	this	chart	type	is	its	ability	to	encode	values	along	two
quantitative	scales	used	as	two	axes.	Note	that	the	logical	dimension	is	not	used
as	an	axis.	Instead,	two	measures	are	used	as	axes.

The	dimension,	which	should	normally	be	of	the	nominal	type,	defines	the
number	of	points	in	the	scatter	chart:



	

The	preceding	scatter	chart	shows	the	amount	of	roads	per	country	(in	million
kilometers)	versus	the	number	of	cars	(in	million	units).	The	color	indicates	the
country's	population.

If	you	have	a	scatter	chart	with	large	amounts	of	data,	Qlik	Sense	uses	an
algorithm	to	create	an	overview	of	the	data,	as	shown	in	the	following	screenshot
—it	pixelates	the	data	points	and	color	codes	the	density	of	the	data	points.

Not	only	does	this	result	in	a	better	overview	of	a	large	number	of	data	points,	it
also	minimizes	the	amount	of	information	that	needs	to	be	transferred	from	the
server	to	the	client.



	

However,	if	you	drill	down	in	the	chart	by	zooming	or	making	selections	so	that
the	number	of	data	points	is	reduced	to	less	than	1,000,	the	data	will	be	shown	as
individual	data	points.

The	tree	map

Another	chart	type	to	mention	is	the	tree	map	(called	block	chart	in	QlikView).
This	is	an	excellent	visualization	if	you	have	two	or	more	dimensions	and	one
single	measure.	The	reason	why	it	is	called	tree	map	is	that	it	was	originally
designed	to	display	hierarchical	relationships	that	have	a	structure	like	a	tree.	In
Qlik	Sense,	you	can	use	it	for	nonhierarchical	relationships	that	have	no
resemblance	with	trees	whatsoever.	Again,	the	dimensions	should	be	of	the
nominal	type:



A	tree	map	showing	the	number	of	cars	in	different	countries

	
The	geographical	map

The	last	chart	type	to	mention	is	the	geographical	map.	This	visualization	allows
you	to	display	regions	and	areas	on	a	map	of	a	country	or	region.	Also,	here	the
dimension	is	of	the	nominal	type:



	

In	Qlik	Sense,	you	can	connect	maps	to	the	data.	Just	as	all	other	charts,	a
geographical	map	can	be	used	for	both	input	and	output.	Selections	in	other
objects	will	affect	how	the	geographical	areas	are	displayed,	and	selections	can
be	made	directly	in	the	map.

Tables

There	are	two	table	types	in	Qlik	Sense—the	standard	table	and	the	pivot	table.
They	are	similar	to	each	other	in	that,	just	as	charts,	they	can	have	both
dimensions	and	measures.	But	they	are	slightly	different	in	appearance	and
capabilities.

The	pivot	table	is	excellent	for	grouping	data	and	showing	it	in	a	compact	way.
Dimensions	can	be	used	both	as	rows	and	columns,	and	rows	can	be	collapsed
into	the	above	dimension:



	

The	standard	table	is	different.	All	data	is	displayed	in	one	long	table,	and	its
advantage	is	that	you	have	full	freedom	in	how	to	sort	the	data	any	way	you
want.	In	addition,	you	can	make	searches	directly	in	the	table:

	

Both	table	types	are	good	for	showing	details	of	the	data,	but	to	give	the	user	an
overview,	a	graphical	visualization	is	better.

Sorting	and	colors



Once	you	have	chosen	the	appropriate	chart	type,	you	should	choose	the
appropriate	chart	settings,	for	example,	scale,	sorting,	and	appearance.	Nominals
should	be	sorted	alphabetically	or	by	some	form	of	measure,	for	example,	the
size	of	the	measure.	The	other	types	should	be	sorted	according	to	the	intrinsic
sort	order.

You	also	need	to	label	the	chart,	for	example,	add	a	title,	descriptions,	y	axis
units,	and	so	on.

Finally,	you	should	also	make	sure	to	use	the	appropriate	colors.	But	be	careful
here…	bright	colors	are	beautiful,	but	when	it	comes	to	data	visualization,	it	is
best	practice	not	to	use	highly	saturated	colors.	Instead,	it	is	good	to	tone	it	down
a	bit.	The	main	reason	is	that	lighter	colors	are	much	easier	on	the	eyes,	so	they
show	data	better,	for	example,	when	displayed	on	large	screens.

Further,	bright	colors	draw	attention,	so	they	should	only	be	used	to	highlight	a
specific	field	value	or	condition.

Tip

The	color	should	never	be	a	decoration	only.	It	should	always	carry	information,
one	way	or	another.

One	way	is	to	use	the	same	color	everywhere	for	the	same	dimensional	value.
This	way,	the	user	will	easily	identify	the	corresponding	bars	or	slices	in
multiple	visualizations.

Another	way	is	to	use	a	color	that	has	an	intensity	that	is	in	proportion	to	a
specific	calculation.	For	instance,	in	the	following	bar	chart,	the	bars	indicate	the
total	number	of	sold	cars	in	different	countries	and	the	color	intensity	indicates
the	number	of	sold	cars	per	capita.	This	is	one	good	way	of	using	colors.



	



Migrating	applications	from
QlikView®	to	Qlik	Sense®
All	QlikView	applications	since	QlikView	Version	8	can	easily	be	migrated.
However,	the	conversion	is	only	partial.	The	data	and	the	script	will	be
converted,	but	nothing	from	the	layout	is	used.	Perform	the	following	steps	to
migrate	applications:

1.	 Move	the	QlikView	app—the	.qvw	file—to	your	Qlik	Sense	Desktop	app
folder	at	C:\Users\<user>\Documents\Qlik\Sense\Apps.	The	file	will
then	appear	in	your	Desktop	hub	as	a	legacy	app.	Its	name	will	have	(qvw)

after	it:	
You	can	now	open	the	app	and	see	the	data	model	and	the	existing	script.
Once	you	make	changes,	you	will	need	to	save	these.	This	is	when	the

conversion	takes	place.	The	old	app	with	the	new	changes	will	be	saved	into	a
file	with	extension	.qvf,	and	the	old	.qvw	file	will	be	renamed	to	*.qvw.backup.



Changes	to	the	script
You	might	also	need	to	make	changes	to	the	script.	The	structure	of	the	script
can	remain	the	same,	but	all	references	to	databases	and	files	should	be	changed.
In	Qlik	Sense,	you	need	to	use	the	data	connections	library.	Hence,	you	must
create	the	library	entries	that	you	need,	and	then	replace	connect	strings	and	file
references	with	references	to	the	library.



Changes	to	the	user	interface
The	modern	layout	in	Qlik	Sense	with	responsive	design	has	very	little	to	do
with	the	old	static	layout	in	a	QlikView	app.	A	consequence	is	that	you	will	need
to	recreate	all	objects—all	charts,	lists,	and	tables.	In	fact,	you	will	often	have	to
rethink	your	entire	layout.	If	you	are	deploying	your	apps	in	an	environment
where	users	have	tablets	or	smartphones,	you	would	probably	have	had	to	do	this
anyway,	since	the	old	style	QlikView	apps	display	poorly	on	small	screens.

The	best	way	to	do	this	is	to	have	both	Qlik	Sense	and	QlikView	displaying	the
same	app	simultaneously.	Then	you	can	go	through	the	app	sheet	by	sheet	and
decide	how	to	design	your	new	Qlik	Sense	app.

The	syntax	for	formulas	has	not	changed,	so	it	is	advisable	to	use	copy	and	paste
when	moving	complex	formulas	from	QlikView	objects	into	Qlik	Sense	objects.

Currently,	there	is	no	support	for	migration	in	the	Qlik	Sense	server.	So,	if	you
want	your	old	app	on	a	server,	you	need	to	first	convert	it	using	Qlik	Sense
Desktop	and	then	import	the	new	file	to	the	server.



Publishing	your	apps
When	you	have	created	an	app,	the	next	step	is	to	make	it	available	for	other
users.	Perform	the	following	steps	if	you	have	developed	your	app	using	Qlik
Sense	Desktop:

1.	 Import	the	app	using	the	Apps	sheet	in	the	Qlik	Sense	Management
Console.	There,	you	will	find	an	Import	button	at	the	bottom:	

Once	the	file	is	imported,	you	may	also	need	to	assign	the	correct	owner:	mark
the	file,	click	on	Edit,	and	change	the	owner,	if	necessary.	The	file	will	then
appear	under	My	Work	in	the	Qlik	Sense	hub.

Note

If	you	have	developed	the	app	using	the	Server	version,	it	will	already	be	under
My	Work.

Before	you	publish	the	app,	it	is	recommended	that	you	make	a	copy	of	the
file.	Mark	the	file	on	the	Apps	page	in	the	Qlik	Sense	Management	Console	and
select	Duplicate	in	the	More	actions	menu.
Now,	you	are	ready	to	publish.	You	can	publish	the	app	by	marking	the	file

and	clicking	on	the	Publish	button.
Publishing	means	that	you	move	an	app	from	your	personal	workspace	to	a

stream,	which	means	the	file	can	be	accessed	by	many	people.	The	properties	of



the	stream,	including	security	rules,	will	then	be	applied.	Note	that	the	file	will
be	removed	from	your	personal	workspace.	This	is	the	reason	why	it	is	a	good
idea	to	make	a	copy	of	it.
When	publishing,	you	will	be	prompted	to	choose	a	stream	for	your

application:	
Currently,	there	is	no	way	to	"unpublish"	an	app.	If	you	want	to	remove	it

from	a	stream,	you	need	to	delete	the	app.



Summary
In	this	chapter,	we	looked	at	the	functions	and	commands	you	need	to	know	to
build	engaging	applications—both	from	a	process	perspective	and,	more
practically,	what	you	need	to	do	to	load	the	data	and	create	an	inviting	user
interface.

In	the	next	chapter,	we'll	move	into	the	basics	of	data	modeling,	which	is	an	area
you	need	to	master	in	order	to	make	advanced	applications	with	multiple	source
tables.



Chapter	6.	Building	Qlik	Sense®
Data	Models
In	the	previous	chapters,	we	looked	at	how	to	create	a	definition	of	which	data	to
load.	But	we	did	not	look	at	which	considerations	you	should	make	on	how	to
load	and	link	different	tables.

So,	in	this	chapter,	we	will	discuss	the	following	topics:

Data	modeling
How	a	data	model	reflects	business	processes



The	QIX	engine
The	QIX	engine	is	the	core	of	the	logic	in	Qlik	Sense.	All	evaluations	and
calculations	are	made	by	this	engine.

Every	user	selection	implies	a	new	logical	situation.	Other	field	values	than	the
ones	used	earlier	are	possible;	summations	need	to	be	made,	so	the	charts	and
the	KPIs	get	different	values	than	what	we	had	before.	Everything	needs	to	be
recalculated,	and	the	data	model	defines	how	this	is	done.

When	the	user	makes	a	selection,	Qlik	Sense	first	evaluates	which	field	values	of
other	fields	are	possible	and	which	rows	are	possible.	In	this	evaluation,	the	key
fields	are	used	to	propagate	the	selection	to	other	tables.	This	is	the	logical
inference.	The	second	step	is	to	calculate	all	formulas	based	on	the	possible
rows.	In	this	step,	all	aggregations	are	made.

The	data	model	defines	how	the	QIX	engine's	logical	inference	and	calculations
will	be	made.



The	Qlik	Sense®	data	model
Data	used	in	Qlik	Sense	needs	to	be	in	a	tabular	form,	very	much	like	a	table	in
Excel.	A	column	in	the	table	is	referred	to	as	a	field	and	every	row	is	a	record.

When	data	is	loaded	into	Qlik	Sense,	it	is	stored	in	the	QIX	internal	database.	In
the	simplest	case,	the	data	is	just	one	single	table.	However,	more	commonly,	the
data	model	consists	of	several	tables	with	links	between	them.	These	define	how
the	different	tables	relate	to	each	other.	It	is,	hence,	a	relational	model.

In	the	previous	chapter,	we	saw	an	example	where	four	tables	were	used:
Customers,	Orders,	Order	lines,	and	Products:

A	simple	data	model	made	from	four	tables

	

This	is	in	fact	the	core	of	a	very	common	business	application—a	sales	analysis
based	on	the	registered	orders.



The	structure	is	not	a	coincidence.	Rather,	the	reason	why	it	looks	the	way	it
does	is	that	it	is	a	reflection	of	the	real	business	processes.	The	relations	these
four	entities	have	in	reality	dictate	the	data	model:

A	customer	may	over	time	place	several	orders.	Hence,	customers	and
orders	should	be	stored	in	different	tables,	and	the	customer	ID	should	be
stored	in	the	Orders	table.
An	order	may	contain	several	order	lines.	Hence,	orders	and	order	lines
should	be	stored	in	different	tables,	and	the	order	ID	should	be	stored	in	the
Order	lines	table.
Several	different	order	lines	can	refer	to	the	same	product.	Hence,	products
and	order	lines	should	be	stored	in	different	tables,	and	the	product	ID
should	be	stored	in	the	Order	lines	table.

You	could	add	a	number	of	additional	tables,	and	for	each	table	you	will	need	to
ask	yourself	what	its	relation	is	with	the	already	existing	tables.	The	new	table
could	be	a	list	of	countries	to	which	the	customers	belong,	of	product	groups,	of
shippers,	of	suppliers,	of	invoices,	and	so	on.	The	business	processes	define
whether	a	customer	can	belong	to	more	than	one	country,	whether	a	product	can
belong	to	more	than	one	product	group,	and	whether	a	single	invoice	can	refer	to
more	than	order.

Hence,	you	should	look	at	the	real-life	entities	and	their	relationships	to
understand	how	they	should	be	modeled	in	the	Qlik	Sense	data	model.



Creating	a	multitable	data	model
Loading	several	tables	is	technically	just	a	matter	of	using	several	Load	or
Select	statements	in	the	script.	Joins,	in	the	way	a	database	manager	knows	it
from	SQL,	are	usually	not	needed.

Normally,	each	Load	or	Select	statement	creates	one	table	in	the	data	model.
Hence,	if	you	want	to	load	four	tables,	you	should	have	four	different	Load	or
Select	statements,	each	defining	the	appropriate	table.

There	are,	however,	some	exceptions	to	this	rule:

If	a	loaded	table	contains	exactly	the	same	set	of	fields	as	a	previously
loaded	table,	the	new	table	will	not	be	created	as	a	separate	table.	Instead,
the	loaded	records	will	be	appended	to	the	existing	table,	which	most	likely
is	what	you	want.	This	way	you	can	add	more	data	to	an	existing	table.
If	the	Load	or	Select	statement	is	preceded	by	the	Concatenate	or	Join
keywords,	the	loaded	table	will	be	merged	with	an	existing	data	table.	The
Concatenate	keyword	is	used	if	you	want	to	add	records	to	the	table,	just
like	in	the	previous	bullet,	but	the	two	tables	have	slightly	different	sets	of
fields.	The	Join	keyword	is	used	to	create	the	product	between	two	tables,
that	is,	the	same	as	a	JOIN	in	SQL.
If	the	Load	or	Select	statement	is	preceded	by	the	Generic	keyword,	the
loaded	table	will	be	transformed	into	several	data	tables.	This	is	a	keyword
you	need	to	use	if	your	table	is	a	generic	database,	that	is,	if	the	second	to
last	column	contains	an	attribute	name	and	the	last	column	contains	the
attribute	value.
If	the	Load	or	Select	statements	are	preceded	by	the	Mapping	keyword,	the
loaded	table	will	not	be	used	as	a	normal	data	table.	The	table	will	be	used
for	other	purposes.
A	previously	loaded	table	can	be	deleted	using	the	Drop	command.	This	is
especially	useful	if	you	make	many	transformations	and	need	temporary
tables.



Linking	tables
Further,	when	loading	multiple	tables,	the	links	between	the	tables	are	defined	by
the	field	names.	At	the	end	of	the	script	run,	the	existing	tables	will	be	evaluated.
If	the	same	field	name	is	found	in	more	than	one	table,	this	field	will	be
considered	to	be	a	field	that	links	both	the	tables.	This	way,	a	data	model	is
created.	The	logic	in	the	script	evaluation	is	hence	identical	in	Qlik	Sense	and
QlikView.

This	means	you	need	to	make	sure	that	the	fields	you	want	to	use	as	links
between	the	different	tables,	the	key	fields,	are	named	the	same	in	all	tables	you
want	to	link.	You	can	do	this	using	the	Profiling	dialog	(refer	to	the	previous
chapter)	or	you	can	rename	them	yourself	by	editing	the	script.

For	instance,	if	the	key	is	called	CustomerNo	in	one	table	and	CustomerID	in	the
other,	you	could	rename	them	like	this:

Load	CustomerNo	as	CustomerID,	…	From	Table1	…	;

Load	CustomerID,	…	From	Table2	…	;

Also,	it	is	important	that	you	make	sure	that	you	don't	have	any	unwanted	links.
For	example,	you	may	have	a	field	called	Description	in	two	different	tables.
This	is	of	course	not	a	key,	but	rather	just	a	short	name	for	something	that	in	one
table	may	be	a	product	description	and	in	another	a	customer	description.	Also,
here	you	need	to	rename	the	fields:

Load	Description	as	Description1,	…	From	Table1	…	;

Load	Description	as	Description2,	…	From	Table2	…	;

The	goal	is	to	create	a	script	that	defines	a	logical,	coherent	data	model	that
corresponds	to	the	business	situation.



Structuring	your	data
In	a	database,	there	are	rules	about	where	different	entities	are	stored.	For
instance,	everything	about	the	customers	should	be	stored	in	the	Customers
table.	A	customer	identifier	is	stored	in	this	table,	which	means	that	the
necessary	data	can	be	retrieved	by	a	simple	lookup	in	the	Customers	table.	So,	if
you	need	to	refer	to	a	customer	from	another	table,	you	just	store	this	identifier
in	the	other	table.



Normalization
The	identifier	needs	to	be	unique	in	the	Customers	table,	so	that	every	record	can
be	addressed.	Here	the	field	is	called	a	primary	key.	In	other	tables,	duplicates
may	exist.	For	example,	several	records	in	the	Orders	table	might	refer	to	the
same	customer.	If	this	is	the	case,	the	key	is	called	a	foreign	key.

A	consequence	of	this	setup	is	that	a	database	can	have	many	tables,	often
thousands.	One	table	for	customers,	one	for	orders,	one	for	order	lines,	one	for
products,	one	for	product	groups,	one	for	shippers,	one	for	invoices,	and	so	on.
Each	table	contains	one	entity	type,	and	each	instance	of	this	entity	has	exactly
one	row	in	the	table—one	record.

In	the	customer	example,	it	means	that	each	customer	is	stored	in	one	row	only,
and	all	the	attributes	of	this	customer	are	stored	in	the	different	columns	of	this
row.	This	is	called	normalization.

The	main	goal	with	normalization	is	to	avoid	redundancy.	In	a	transactional
database,	it	is	important	that	a	piece	of	information	is	stored	in	only	one	place.
Not	only	does	it	take	less	space,	it	also	speeds	up	the	update	process	and
minimizes	errors.	You	can	imagine	the	confusion	if,	for	instance,	a	customer
address	is	stored	in	several	places	and	the	different	occurrences	contain	different
addresses.	Which	version	should	you	trust?

So,	the	source	data	is	often	highly	normalized.	But	does	this	mean	that	the	Qlik
Sense	data	model	should	be	normalized	too?

Yes	and	No.

The	Qlik	Sense	data	model	does	not	need	to	be	as	normalized	as	the	source	data.
Redundancy	is	not	a	problem,	and	if	duplicating	data	improves	the	user
experience,	you	should	definitely	consider	using	duplicate	data.	The	data	model
should	be	optimized	for	user	experience	and	performance,	not	for	minimal	size.

But	some	normalization	has	great	advantages—structuring	the	data	in	entities
(tables)	simplifies	the	data	modeling	work.	It	also	makes	maintenance	simpler,
since	a	data	model	and	a	script	can	be	understood	by	a	developer	who	has	never
seen	it	before.	Finally,	the	QIX	engine	works	better	with	a	normalized	model.	It



is	easier	to	make	it	calculate	numbers	correctly	and	avoid	double	counting,
which	is	a	real	problem	when	you	start	to	de-normalize.

So	the	bottom	line	is	that	you	should	have	some	normalization,	but	it	does	not
need	to	be	as	strict	as	in	the	source	data.

The	main	case	in	which	you	need	to	de-normalize	is	if	you	use	the	same	entity	in
different	places	in	the	data	model.

For	example,	you	may	use	a	table	listing	external	organizations	in	the	context	of
supplier,	shipper,	as	well	as	customer.	This	means	the	Organization	table	is
used	in	different	roles.	In	such	a	case,	you	should	load	the	organization	table
three	times:	first	as	a	supplier,	then	as	a	shipper,	and	finally	as	a	customer,
linking	to	the	three	different	foreign	keys.

Another	common	situation	is	that	you	have	several	dates	in	your	data	model:
OrderDate,	RequiredDate,	ShippingDate,	and	InvoiceDate.	In	other	words,	the
date	is	used	in	different	roles.	Also,	here	you	should	load	the	dimension—the
calendar—several	times,	once	per	date	field.

Another	reason	to	de-normalize	is	for	optimization	purposes.	One	of	the	cases
would	be	if	you	have	several	very	large	tables	linked	to	each	other,	for	example,
if	you	have	an	order	headers	table	as	well	as	an	order	lines	table,	and	both	are
large	(millions	of	records).	From	a	performance	perspective,	this	is	not	optimal.
The	QIX	engine	will	need	more	CPU	cycles	than	if	the	information	of	the	two
tables	had	been	stored	in	one	single	table.	So,	you	might	want	to	join	both	the
tables	for	performance	reasons.

A	small	word	of	warning	though,	joining	tables	is	not	always	safe.	This
operation	may	lead	to	a	record	being	duplicated	on	multiple	records,	and	if	the
record	holds	a	number,	the	summation	made	by	the	QIX	engine	will	lead	to	an
erroneous	result—the	number	will	be	counted	twice.	In	the	case	of	order	headers
and	order	lines,	you	know	that	an	order	line	can	belong	to	one	order	header	only,
so	the	numbers	in	the	order	lines	table	will	not	be	duplicated.	Hence,	it	is	safe	to
join	here.

However,	if	you	have	a	number	in	the	orders	table,	it	will	be	duplicated.	But
luckily,	this	table	rarely	contains	any	numbers.



Star	schema	and	snowflake	schema
The	normalization	is	usually	quite	different	in	the	source	data	model	and	in	the
analytical	model.	For	the	source	data,	one	often	talks	about	transaction	tables
and	master	tables.	The	transaction	tables	are	the	ones	that	store	orders,	invoices,
and	other	transactions.	In	these,	new	records	are	typically	added	every	hour,
minute,	or	even	second.

This	is	very	different	from	the	master	tables,	where	new	records	are	added	much
more	rarely:	Products,	Customers,	and	the	Calendar	are	typical	master	tables.

Master	tables	are	often	used	for	many	purposes	and	are	usually	linked	to	several
transaction	tables,	which	makes	the	data	model	look	as	if	it	has	circular
references.	This	is,	however,	not	a	problem,	since	every	link	means	a	separate
lookup	in	the	master	table.

For	example,	in	the	following	relational	model,	the	Organizations	table	is
linked	to	the	transactional	data	through	three	keys:	Customer,	Shipped	by,	and
Supplied	by.	This	means	that	a	specific	shipment	item	can	be	linked	to	several
organizations—one	customer,	one	shipper,	and	one	supplier:

	



In	an	analytical	model,	the	tables	are	used	in	a	different	way.	The	transactions
are	joined	into	one	single	fact	table,	and	the	master	tables	are	loaded	as
dimensions.	The	reason	for	this	is	partly	historical.	Older	hypercube	tools	could
not	work	unless	all	metrics	were	collected	into	a	fact	table.	In	addition,	they
could	use	hierarchical	dimensions	surrounding	the	fact	table.	The	model	will
then	look	like	a	star;	hence	the	name	star	schema:

	

This	model	has	only	one	layer	of	dimensions—all	the	tables	are	directly	linked
to	the	fact	table.	But	if	the	model	instead	uses	dimensions	in	two	or	more	levels,
the	model	is	called	a	snowflake	schema:



	

For	Qlik	Sense,	the	difference	is	minimal.	All	three	data	models	can	be	used—
provided	that	master	tables	used	in	several	roles	are	also	loaded	several	times.	It
is	also	possible	to	have	metrics	in	any	table,	not	just	the	fact	table.

A	star	schema	is,	however,	both	simple	and	efficient,	so	we	strongly	recommend
using	this	as	an	initial	model	for	your	data.	It	is	then	easy	to	build	further	and
make	it	more	complex.



Pitfalls	in	the	data	model
When	you	create	your	data	model,	you	should	look	out	for	two	potential
problems:	synthetic	keys	and	circular	references.

Synthetic	keys	are	automatically	created	if	you	have	multiple	keys	between	two
tables.	They	are	not	by	themselves	bad,	but	they	could	be	a	warning	sign	of	a
bad	data	model.	If	you	have	made	a	mistake	when	loading	the	data,	the	first	sign
is	often	one	or	several	synthetic	keys.	Then,	you	need	to	go	back	and	investigate
why	this	has	happened:

	

The	preceding	diagram	shows	a	synthetic	key	modeled	the	way	you	loaded	the
data.	It	is	a	correct	one	that	you	don't	need	to	change.	Internally,	it	is	stored
differently;	refer	to	the	following	diagram.	In	the	data	model	viewer	(as	shown
in	the	following	diagram),	you	can	toggle	between	these	two	views:



	

Qlik	Sense	will,	at	the	end	of	the	script	run,	warn	you	about	these	potential
problems,	as	shown	in	the	following	screenshot:

	



Usually,	you	do	not	want	synthetic	keys—you	want	one	single	key	in	each	table
link.	However,	if	you	know	that	you	have	multiple	keys	linking	two	tables,	and
that	this	is	the	way	you	want	your	data	model,	then	there	is	no	problem	in	having
synthetic	keys.

The	second	potential	problem	is	circular	references.	This	happens	if	you	load
data	in	such	a	way	that	the	links	between	the	tables	form	a	loop.	The	following
diagram	is	a	typical	example:

	

The	circular	reference	from	a	data	modeling	perspective	is	an	error	and	not	just	a
warning,	and	you	will	get	an	error	message	at	the	end	of	the	script	run:



	

If	you	have	a	circular	reference,	you	must	rethink	your	data	model	with	the	goal
of	removing	the	loop.

It	could	sometimes	be	difficult	to	figure	out	how	to	remove	a	circular	reference,
but	a	good	advice	is	to	look	at	every	link	in	your	data	model	and	ask,	"Are	these
two	fields	really	the	same	thing?	Or	do	the	fields	have	different	roles?."	In	the
preceding	screenshot,	you	have	a	circular	reference	where	the	Date	field	has	two
different	roles:	one	is	the	date	when	the	order	arrived,	and	the	other	is	the	date
when	the	invoice	was	sent.	These	two	dates	need	not	necessarily	be	the	same.
Hence,	they	should	not	be	linked	but	instead	loaded	as	two	different	fields.



The	data	model	viewer
The	script	defines	the	data	model,	but	if	you	want	to	view	it	graphically,	you
should	use	data	model	viewer.	This	is	opened	from	the	toolbar	menu,	as	shown

in	the	following	screenshot:	

Clicking	on	the	icon	to	the	right	in	the	menu	will	open	Data	model	viewer	in	a
new	tab.	Once	this	is	open,	you	can	visually	see	what	the	data	model	looks	like.
If	you	have	more	than	one	table,	they	should	be	linked	by	the	key	fields	and
should	look	something	similar	to	the	following	screenshot:	

The	Data	model	viewer	is	an	excellent	tool	to	get	an	overview	of	the	data
model.	It	is	also	a	very	good	debugging	tool	in	the	application	development



process.

Check	whether	the	data	model	looks	the	way	you	want	it	to	and	make	sure	that
you	have	no	circular	references.	Circular	references	will	be	marked	with	red
links	and	synthetic	keys	will	be	named	$Syn:	



Using	preview	mode
The	Data	model	viewer	option	has	a	useful	additional	feature,	preview	mode.
This	mode	allows	you	to	preview	both	the	data	and	metadata	of	a	field.

Select	a	field	in	a	table	and	click	on	the	Preview	button	to	the	lower-left	corner
of	the	screen.	This	opens	the	Preview	panel	in	which	you	can	see	data	about	the
field	and	some	sample	data	records	from	the	table.	In	addition,	you	can	define
dimensions	and	measures	based	on	the	chosen	field,	as	shown	in	the	following
screenshot:	

	



Summary
In	this	chapter,	we	looked	at	the	functions	and	commands	you	need	in	order	to
create	a	logical	and	coherent	data	model	that	reflects	your	business	processes.

In	the	next	chapter,	we'll	move	away	from	app	creation	and	start	examining	how
a	Qlik	Sense	server	can	be	deployed	in	the	cloud.



Chapter	7.	Qlik	Sense®	Apps	in	the
Cloud
In	the	previous	chapters,	we	looked	at	how	to	go	about	creating	Qlik	Sense	apps.

In	this	chapter,	we	look	at	sharing	those	apps	with	colleagues	and	friends	in	the
cloud.	We	will	cover	the	following	topics:

Why	using	the	cloud	makes	sense
Sharing	Qlik	Sense	Desktop	apps	in	the	cloud
Creating	Qlik	Sense	apps	directly	in	the	cloud
Maintaining	Qlik	Sense	Cloud	apps
Adding	context	through	external	data	from	Qlik	DataMarket



Why	use	the	cloud?
Deploying	software	in	the	cloud	removes	infrastructure	challenges	and	provides
access	to	data	and	computing	power,	software,	and	services	from	virtually
anywhere.	For	Qlik	Sense	Enterprise	customers,	this	might	mean	a	large
organization	choosing	to	deploy	Qlik	Sense	apps	on	a	private	(internal)	cloud,
using	a	platform	such	as	AWS,	for	example.	This	could	enable	them	to	scale	up
their	applications	in	a	cost-effective	and	flexible	manner.	Deploying	using	a
private	cloud	model	is	out	of	the	scope	of	this	chapter;	however,	it	instead	covers
how	Qlik	Sense	Desktop	users	can	also	get	the	benefits	of	the	public	cloud	in
two	ways—through	sharing	apps	and	adding	data	content.



Cloud	sharing
The	key	value	of	cloud	enablement	for	Qlik	Sense	is	bringing	together	data	and
people	by	deploying	apps	in	the	cloud.	This	fosters	collaboration	through	the
sharing	of	insights	and	allows	more	people	to	create	and	discover	through	Qlik
Sense.

Qlik	Sense	Cloud	allows	developers	to	share	dashboards	and	storyboards	for	free
via	the	Web	for	up	to	five	users.	Qlik	Sense	Cloud	also	offers	the	ability	to	create
apps	in	the	cloud,	removing	the	need	to	use	the	desktop,	and	meaning	that	apps
can	be	developed	without	the	need	to	download	a	Windows	executable,	on	any
device	running	an	HTML5-enabled	web	browser.



Cloud	content
Qlik	Sense	developers	can	use	the	cloud	as	a	source	of	data	to	broaden	the	scope
of	their	Qlik	Sense	apps	via	Qlik	DataMarket.

Qlik	DataMarket	provides	and	integrates	third-party	data	with	the	Qlik	Sense
visual	analytics	platform,	much	of	it	for	free.	With	data-as-a-service,	app
developers	can	use	a	comprehensive	library	of	external	data	directly	within	Qlik
Sense,	allowing	them	to	augment	and	cross-reference	their	internal	data	to	gain
context	and	so	drive	new	insights.

Qlik	DataMarket	comes	preconfigured	with	many	ready-to-use	data	sources	via
a	subscription	model.	Data	sources	include	business	demographics,	currencies,
population,	economic	indicators,	development	indicators,	and	weather,	all
offered	at	various	levels	of	granularity,	some	down	to	postal	code.



Using	Qlik	Sense®	apps	in	the	cloud
So,	you've	built	a	Qlik	Sense	Desktop	app	and	you	want	to	share	it	with	others,
either	colleagues	or	friends,	so	you	can	find	insights	together.	The	cloud	is	the
best	way	to	do	that,	and	doing	so	is	built	directly	into	Qlik	Sense.

Qlik	Sense	isn't	just	for	work,	playing	with	data	can	be	fun	too.	In	this	chapter,	I
will	share	a	Qlik	Sense	app	exploring	UK	music	singles	chart	data	going	back	to
1952.



Uploading	an	app	from	the	desktop
To	upload	an	app,	you	first	need	to	log	on	to	Qlik	Sense	Cloud	on	the	Web.	From
the	Qlik	Sense	hub,	there	are	two	ways	to	open	Qlik	Sense	Cloud:	either	by
clicking	on	the	cloud	image	in	the	top-right	corner	of	the	window	or	by	right-
clicking	on	the	app	itself.	Both	the	actions	will	take	you	to	the	Qlik	Sense	Cloud
Hub	in	a	browser.	At	this	point,	if	you	haven't	done	so	already,	you'll	have	to
register.

The	following	screenshot	shows	the	option	for	in-built	cloud	uploading:

Options	to	upload	to	Qlik	Sense	Cloud	from	the	desktop	hub

	

As	you'll	see	when	you	log	in,	Qlik	Sense	Cloud	is	intentionally	simple,
presenting	just	a	few	options.	The	actions	you	can	take	are:

Uploading	Qlik	Sense	apps
Uploading	personal	data	files	and	creating	apps	directly	in	the	cloud
Sharing	apps	with	up	to	five	people



Managing	your	Qlik	Cloud	profile

The	following	screenshot	shows	the	Qlik	Sense	Cloud	Hub:

Qlik	Sense	Cloud	Hub	options

	

Uploading	an	app	you	have	built	on	the	desktop	is	simple.	Click	on	New	app,
navigate	to	the	file	in	the	directory,	and	import.	The	uploaded	QVF	file	brings
the	data	model,	sheets,	and	stories	with	it	to	the	cloud	for	sharing.	Note	that	the
source	data	that	was	loaded	into	the	app	is	not	uploaded	to	Qlik	Sense	Cloud.
This	has	implications	for	maintaining	the	app—more	on	this	in	a	later	section.



	

In	the	following	screenshot,	you	can	see	the	music	chart	app	after	upload.	You'll
notice	that	when	uploaded,	the	app	appears	with	the	default	thumbnail	picture
(rather	than	the	custom	image).	Qlik	Sense	Cloud	Hub	does	not	currently
support	custom	thumbnail	images.

While	not	visible	in	the	cloud	hub,	within	the	cloud	app's	information	pane,	you
can	show	the	custom	image	by	selecting	it	from	the	media	library.	The	media
library	is	imported	on	upload,	and	includes	thumbnails	and	any	graphic	files
you've	added	to	stories	in	the	desktop	app:



	

After	the	upload,	you	can	use	the	app	in	exactly	the	same	way	as	if	it	was
running	on	a	desktop.	There's	no	difference;	it's	just	Qlik	Sense	running	on	a
server	hosted	by	Qlik	in	the	cloud.	Modifications	to	the	app	can	still	be	made
using	the	Edit	button,	but	only	when	the	app	is	in	the	My	personal	cloud	stream
(more	on	this	later).

Note	that,	unless	you	selected	the	publish	option	at	upload,	only	you	can	see	it—
it's	not	been	shared	with	anyone	else	yet.



Creating	an	app	in	Qlik	Sense®	Cloud
Qlik	Sense	apps	can	also	be	created	directly	in	Qlik	Sense	Cloud.	The	only
difference	in	doing	so	is	that	data	must	first	be	loaded	into	the	My	personal
data	files	folder	on	the	Qlik	Sense	Cloud	Hub	in	order	to	be	available	for
loading.



Sharing	an	app	in	Qlik	Sense®	Cloud
Qlik	Sense	Cloud	is	designed	to	enable	people	to	share	apps.	To	do	this,	a	cloud
app	needs	to	be	published,	moving	it	from	the	My	personal	cloud	stream	to	the
My	shared	cloud	stream.	To	do	so,	right-click	on	the	app	icon	in	the	cloud	hub
and	select	Publish	to	shared	cloud,	as	shown	in	the	following	screenshot:	

Once	published,	you	can	invite	up	to	five	people	to	access	Qlik	Sense	apps	in
your	shared	cloud	stream.	Note	that	anyone	you	share	it	with	will	be	able	to	see
all	the	apps	you	have	published.	To	do	so,	click	on	share	and	enter	their	e-mail
address	as	shown	in	the	following	screenshot.	When	people	accept	the	invitation
to	share	and	register	on	Qlik	Sense	Cloud,	they	appear	as	followers	at	the	bottom
of	the	My	shared	cloud	stream:	



By	selecting	the	Notification	center	(in-tray	icon),	you	can	see	who's	viewed
apps	and	other	alerts	about	Qlik	Sense	Cloud,	as	shown	in	the	following
screenshot:	

People	that	you	share	apps	with	can	use	those	apps,	making	selections,	and	so
on,	but	they	cannot	share	them	with	others	or	modify	them.	You	can	see	in	the



following	screenshot	(from	my	follower	Sarah's	Mac)	that	there	is	no	edit	pen
icon	on	the	shared	app:	



Maintaining	Qlik	Sense®	Cloud	apps
Some	thought	needs	to	go	into	maintaining	apps	in	Qlik	Sense	Cloud:

Just	as	with	Qlik	Sense	Server,	in	Qlik	Sense	Cloud,	when	an	app	has	been
published	to	a	shared	stream,	it	can	no	longer	be	modified.	To	make
changes,	it	must	be	unpublished.	When	this	happens,	your	followers	will	no
longer	be	able	to	see	the	app,	until	you	decide	to	publish	it	again.
For	uploaded	apps,	rather	than	those	created	in	the	cloud,	it's	important	to
note	that	any	modifications	made	to	the	cloud	version	of	an	app	(for
example,	adding	new	sheets,	and	so	on)	will	not	be	reflected	in	the	original
Desktop	version.	The	simplest	way	to	deal	with	this	is	to	download	the
Cloud	version	to	the	Desktop,	by	right-clicking	on	the	app	in	the	Qlik	Sense
Cloud	Hub.	Ideally,	you	should	decide	which	version	(Cloud	or	Desktop)	is
to	be	the	master	on	uploading	in	order	to	avoid	version	management	issues.

If	there	are	changes	to	the	source	data	that	need	reflecting	in	a	Qlik	Sense	Cloud
app,	there	are	differences	depending	on	how	the	cloud	app	was	created.

If	the	app	was	built	directly	in	Qlik	Sense	Cloud	using	uploaded	data
sources,	then	the	easiest	approach	is	to	take	down	the	data,	using	the
Remove	from	cloud	right-click	option,	and	then	upload	the	new	dataset
before	reloading.	If	the	data	file	has	the	same	name	and	structure,	the	reload
will	work	with	no	problems.
If	the	app	was	uploaded	directly	from	the	desktop,	then	it	is	a	little	more
complex,	as	the	source	data	will	not	be	in	the	cloud.	In	this	case,	there	are
two	options:

Remove	the	app	from	the	cloud,	reload	the	changed	data	on	the
desktop,	and	re-upload	the	app.
Upload	the	changed	data	to	the	My	personal	data	files	space	on	Qlik
Sense	Cloud	and	then	modify	the	load	script.	The	file	path	in	the	load
script	will	need	to	be	amended	so	that	each	section	points	to	the
uploaded	data	files,	which	reads	lib://<user>/<file>.



Using	the	Qlik	DataMarket®	content
Adding	externally	sourced	data	to	any	business	intelligence	app	can	yield	new
insights.	For	example,	looking	at	how	the	weather	affects	the	sales	of	certain
products	could	be	hugely	beneficial	to	retailers.	Much	data	is	freely	available	on
the	Web,	but	it	is	rarely	in	an	easily	consumable	form.	This	is	exactly	the
problem	Qlik	DataMarket	solves,	by	providing	curated,	normalized	datasets	that
can	be	easily	loaded	into	Qlik	Sense	available	in	the	cloud.

Note	that	Qlik	DataMarket	works	as	a	source	for	Qlik	Sense	irrespective	of
whether	you	are	running	in	the	cloud	or	not.



Adding	the	QlikMarket®	data
The	UK	music	chart	app	contains	a	field	showing	the	country,	the	musician,	or
the	group	it	originated	from.	Perhaps	it	would	be	interesting	to	know	which
countries	have	had	more	hits	per	head	of	population.	It	is	easy	to	do	this	in	Qlik
Sense,	and	can	be	done	directly	with	cloud	deployed	apps	too.

First,	within	the	app,	open	the	Data	Manager	and	click	on	Add	data	and	select
Qlik	DataMarket.	This	shows	you	a	menu	with	the	categories	of	data	available.
In	this	case,	select	Demographics	as	shown	in	the	following	screenshot:



Qlik	DataMarket	data	categories



	

At	this	point,	the	available	datasets	containing	demographic	information	are
shown,	including	those	that	are	premium	(that	is,	paid	for)	and	those	that	are
free.	In	this	case,	the	free	dataset	World	population	by	country	is	what	is
needed:



	



At	this	point,	the	data	from	the	set	is	selected	before	loading:

	

In	the	app,	there	is	already	a	field	called	Country,	which	Qlik	Sense	uses	as	a
key	in	order	to	allow	you	to	work	with	the	data,	as	the	Data	Model	Viewer
shows:



	

A	few	clicks	and	the	app	is	enriched	with	content	that	provides	context	for
analysis	and	insight,	enabling	users	to	ask	more	questions	based	on	a	broader
scope	and	increased	context.



Summary
In	this	chapter,	we	looked	at	sharing	Qlik	Sense	apps	in	the	cloud,	and	at	using
Qlik's	Data-as-a-Service	offering	to	add	context	to	apps.

In	the	next	chapter,	we'll	look	at	extending	the	use	of	Qlik	Sense	through	the
Qlik	Analytic	Platform	(QAP).



Chapter	8.	Extending	the	Qlik®
Analytic	Platform
In	the	previous	chapters,	we	outlined	the	various	capabilities	of	Qlik	Sense	and
their	use.	One	of	the	advantages	of	Qlik	Sense	is	that	it	is	built	on	open	API	's
Qlik	Analytic	Platform	(QAP),	that	allows	the	customers	and	partners	to
extend	their	analytic	solutions.	This	chapter	will	provide	an	overview	and	some
interesting	examples	of	how	to	enrich	your	solutions	with	QAP.	It	is	not	meant	to
replace	the	Qlik	Sense	for	Developers	help	documentation,	which	can	be	found
at	https://help.qlik.com/sense/2.1/en-us/developer/#Home-developer.htm.

With	this	said,	in	this	chapter,	we	will	share	some	interesting	examples	and
resources	in	the	following	key	areas:

Web	mashups
Extending	Qlik	Sense	client
Developer	community	–	branch

QAP	is	made	up	of	the	following	three	layers,	which	include	the	client	layer
(Qlik	Hub	and	Qlik	Management	Console),	API,	the	SDK	layer,	and	finally	the
Engine	layer,	which	contains	the	QIX	engine	and	all	the	supporting	services:	

https://help.qlik.com/sense/2.1/en-us/developer/#Home-developer.htm


	

We	will	explore	each	of	these	layers	through	specific	examples	on	how	QAP	is
used	to	extend	your	data	discovery	solutions.



Qlik®	Dev	Hub
Any	discussion	of	QAP	would	be	remiss	without	reviewing	the	new	Qlik
Developer	Hub	which	was	released	in	Qlik	Sense	2.1:	

	

The	Qlik®	Dev	Hub,	shown	in	the	preceding	screenshot,	was	developed
specifically	to	simplify	access	and	development	using	Qlik's	APIs,	but	it	is	not	a
replacement	for	the	rudimentary	concepts	of	JavaScript,	HTML	(Hyper	Text
Markup	Language),	and	CSS	(Cascading	Style	Sheets).	The	Qlik	Dev	Hub	can
be	accessed	via	any	Qlik	Sense	Server,	or	Qlik	Sense	Desktop	via	a	browser.	The
link	is	https://<servername>/dev-hub/,	and	for	the	desktop	version	of	Qlik
Sense,	it	is	https://localhost:4848/dev-hub/.	This	chapter	will	focus
primarily	on	Qlik	Sense	Enterprise.	Dev	Hub	provides	four	key	tools	for
extending	Qlik	Sense	solutions.	They	include	the	following:

Single	configurator:	A	Qlik	Sense	tool	that	provides	an	easy	way	of
creating	simple	mashup	pages	by	returning	a	URL	that	will	resolve	to	a
Qlik	Sense	object.
Extension	editor:	An	editor	for	JavaScript	files	and	QEXT	files.	It	assists



you	with	creating	new	visualization	extensions	as	well	as	editing	existing
ones.
Mashup	editor:	An	editor	for	JavaScript	files	and	HTML	files.	It	assists
you	with	creating	your	own	mashups	displaying	Qlik	Sense	data	on	your
website.	You	can	use	the	templates	provided	with	Qlik	Sense	to	get	started
with	building	your	own	mashups.
Engine	API	Explorer:	A	tool	that	helps	you	explore	the	capabilities	of
Qlik	Engine	API.

With	this	said,	now	let's	take	a	closer	look	at	the	most	common	solution
extensions	that	can	be	generated	via	Dev	Hub.



Web	mashups
One	of	the	most	common	requests	is:	can	Qlik	Sense	create	a	web	mashup	with
Qlik	Sense	objects?	There	are	two	options	based	on	the	level	of	control	and
interactivity	required	of	the	Qlik	Sense	objects.	The	first	is	the	single
configurator	which	provides	an	easy	way	to	create	simple	mashup	pages	without
having	to	create	any	code.	It	simply	generates	a	URL	that	returns	a	complete
HTML	page	with	an	embedded	Qlik	Sense	visualization.	To	create	a	Qlik	Sense
object	link,	select	the	Single	configurator	as	shown	in	the	following	screenshot.
Once	selected,	you	will	need	to	select	the	application	you	wish	to	access	for	the
mashup.	In	this	example,	the	Executive	Dashboard	application	was	selected.	It
is	important	to	note	that	a	developer	should	access	a	published	application	that	is
in	a	stream	that	aligns	with	the	requirements	of	the	resulting	mashup.	There	is
additional	information	on	administration	in	Chapter	9,	Administering	Qlik
Sense®.

Once	selected,	a	listing	will	be	generated	of	all	the	sheets	and	respective	objects.
A	key	point	to	highlight	is	that	both	sheets	and	individual	objects	are	available
based	on	your	web	page	requirements.



For	this	example,	Margin	vs	Sales	was	chosen	with	selection	bars	showing	so
that	a	user	can	interact	with	this	visualization.

In	the	following	screenshot,	you	can	see	the	use	of	the	Single	configurator
generating	the	URL	and	the	Iframe	code	for	the	Margin	vs	Sales	by	Sales	Rep
scatter	chart	that	is	contained	in	the	Executive	Dashboard	Qlik	Sense
application:	



The	resulting	URL	can	then	be	embedded	into	a	web	page.	Dev	Hub	offers	a
convenient	View	option	so	that	a	developer	can	see	the	results	of	the	generated
URL	outside	the	Single	configurator	editor.



Additionally,	multiple	single	Qlik	Sense	objects	can	be	embedded	and	they	will
share	common	selections	and	interactions	because	of	the	QIX	engine.	Please
note	that	not	only	can	the	visualizations	be	embedded,	but	the	entire	Qlik	Sense
sheets	can	be	embedded	as	well.	For	more	information,	please	refer	to	the	Qlik
Sense	for	Developers	help	site.

Now,	let's	move	onto	more	complex	mashup	requirements	with	the	Mashup
editor.	To	start	the	creation	of	a	new	mashup,	select	Create	new	and
immediately	you	will	notice	that	the	Mashup	editor	provides	the	following	four
pre-built	templates	to	ease	your	development:

Grid	mashup	template:	



Basic	mashup	template	with	absolute	positioning:	



Basic-single	mashup:	



SlideShow	mashup	



Once	created,	all	these	mashups	are	stored	in	the	content	store	of	the	Qlik	Sense
server.	Dev	Hub	provides	an	easy	way	to	filter	mashups	versus	visualization
extensions.	The	following	are	the	four	templates	that	were	generated:	

Now,	let's	dig	a	bit	deeper	as	we	build	out	the	Basic-single	mashup	with	the



creation	of	a	sales	and	travel	mashup	that	spans	the	two	Qlik	Sense	applications:	

With	the	template	created,	we	are	ready	to	begin.	One	of	the	advantages	of
working	in	the	Dev	Hub	is	that	you	can	create	mashups	that	can	span	different
Qlik	Sense	applications,	in	this	case,	the	Executive	Dashboard	that	contains
sales	analysis	visualizations	and	Travel	Expense	Management	which	tracks
travel	and	food	expenses.	From	the	Executive	Dashboard	app,	we	have	dragged
Average	Sales	Per	Day,	Total	Revenue	by	Product	Group,	and	finally,
Revenue	by	Sales	Rep:	



Now,	let's	combine	these	Qlik	Sense	sales	objects	with	Expense	by	Expense
Type,	and	Employee	Airfare	Expense	from	the	Travel	Expense	Management
app:	



With	the	key	Qlik	Sense	objects	all	in	place,	we	can	focus	on	changing	the
headings	for	the	mashup	page.	Fortunately,	the	Mashup	editor	generates	the
following	four	files	for	this	template.	They	include:

Sales	and	Travel.qext

Sales	and	Travel.html

Sales	and	Travel.js

Sales	and	Travel.css

To	make	changes	to	all	the	headers	and	other	formatting,	just	edit	Sales	and
Travel.html:	



In	the	case	of	this	example,	the	Header	1	and	Header	2	titles	were	removed
because	the	Qlik	Sense	app	object	titles	were	self-explanatory.	Additionally,
because	this	is	a	generated	HTML	file,	it	can	be	edited	for	additional	formatting
and	content.	The	following	is	the	resulting	web	page	that	is	previewed	from	the
Mashup	editor:	





Extending	the	Qlik	Sense®	client
Now,	let's	turn	our	attention	to	extending	the	visualization	objects	in	Qlik	Sense.
One	of	the	advantages	of	an	open	API	is	that	it	can	be	extended	easily	to	include
external	visualizations.	In	our	example,	we	will	explore	adding	a	People	Chart	to
Qlik	Sense.	This	example	is	available	in	the	following	locations:

Qlik	Sense	Desktop:	...\Users\
<UserName>\Documents\Qlik\Examples\Extensions

Qlik	Sense:	...\ProgramData\Qlik\Examples\Extensions

We	start	the	process	by	reviewing	the	People	Chart	that	is	installed	with	Qlik
Sense:

This	visualization	extension	is	made	up	of	the	following	four	files:

peoplechart-properties.js:	This	JavaScript	sets	the	properties	in	which
the	rendering	and	drawing	scripts	will	operate
com-qliktech-peoplechart.js:	This	JavaScript	pulls	together	the
properties,	rendering,	and	drawing	scripts	for	execution
com-qliktech-peoplechart.qext:	This	file	is	primarily	used	to	document
the	extension	name,	description,	type,	and	so	on
peoplechart.css:	Cascading	Style	Sheets	(CSS)	describes	how	HTML
elements	of	the	extensions	will	be	displayed

The	first	step	in	defining	this	extension	is	to	edit	the	applicable	fields	of	the	com-
qliktech-peoplechart.qext	file	to	set	a	default	title,	description,	icon,	and
type:



Once	this	is	completed,	we	need	to	define	the	properties	for	the	extension	in	our
Java	code.	In	this	example,	we	will	do	this	in	the	com-qliktech-
peoplechart.js	file,	which	is	loaded	in	the	define	statement:

The	next	step	is	to	enable	selections.	To	accomplish	this,	we	use	the
selectValues	function	to	reuse	Qlik	Sense	standard	selection	UI.	Also,	make
sure	to	set	the	selected	CSS	class	on	the	selected	elements:

Now	that	it	is	completed,	we	need	to	implement	the	paint	method.	In	the	paint
method,	we	create	the	HTML	for	our	extension	based	on	the	data	in	the	layout



parameter.	Then,	we	set	the	content	of	the	$element	parameter	to	display	the
extension	content.	It	is	also	important	to	tag	your	elements	with	class=
'selectable'	data-value=	'0':

Additionally,	let's	make	sure	that	this	object	is	available	for	storytelling	by
setting	canTakeSnapshot	to	true:

It	is	a	good	programming	practice	to	keep	your	styling	in	a	separate	CSS	file.
Qlik	Sense	sets	the	CSS	class	qv-object-[extension	name]	on	your
extensions.	You	should	prefix	your	CSS	rules	with	that.	You	then	load	your	CSS
file	with	RequireJS	and	add	its	content	to	the	HTML	page:

Finally,	in	the	peoplechart-properties.jss,	we	need	to	define	the	accordions
for	reuse	on	the	properties	panel	and	the	minimum	requirements	of	one
dimension	and	one	measure	to	render	this	object:



Once	the	extension	is	saved,	it	is	available	for	use	by	developers	in	the	Qlik
Sense	Chart	Library.	In	the	following	screenshot,	you	can	see	the	Word	Cloud
chart	type	is	available	and	was	used	to	convert	the	horizontal	bar	chart	of	Total
Revenue	by	Product	Group	into	a	Word	Cloud:



Additionally,	please	note	that	all	extensions	are	stored	in	the	Qlik	Sense	content
store	and	are	managed	by	the	QMC.	Additional	information	on	administration	is
available	in	Chapter	9,	Administering	Qlik	Sense®.



Now,	let's	turn	our	attention	to	the	final	area	of	Dev	Hub,	that	is,	Engine	API
Explorer.



Engine	API	Explorer
Qlik	Engine	API	Explorer	is	a	tool	that	allows	developers	to	send	messages	and
receive	answers	from	the	QIX	engine.	This	provides	an	easy	way	for	developers
to	form	handles,	methods,	and	macros	to	send	the	QIX	engine	and	test	the	results
before	coding	an	application.	To	access	the	Engine	API	Explorer,	select	the
Engine	API	Explorer	from	the	Qlik	Dev	Hub	menu:	

The	first	step	is	to	connect	to	a	Qlik	Sense	app.	To	do	this,	we	first	must	know
what	applications	are	available	on	this	server.	Fortunately,	there	is	a	full	list	of



macros	available	to	help	explore	QIX	Engine:	

In	our	case,	we	will	be	using	the	Get	applist	to	see	what	applications	are
available	to	explore	on	this	server.	Based	on	the	response,	the	Executive
Dashboard	is	available:	

Now	we	are	ready	to	connect	to	the	Executive	Dashboard	app.	Note	the	send
commands	generated	and	the	engine	response.	If	satisfied	with	the	response,	the
developer	can	then	copy	and	paste	into	their	development	environment:	



Now	that	we	are	connected,	there	is	a	global	method	to	manage	every	aspect	of	a
Qlik	Sense	app	from	outside	the	Qlik	Sense	client.	This	includes	the	full
application	life	cycle	from	creation,	maintenance,	versioning,	to	deletion:	



Now	that	we	have	explored	the	Qlik	Analytic	Platform	through	the	Dev	Hub,
let's	turn	our	attention	to	the	value	of	having	an	open	API	through	a	developers
community	called	Qlik	Branch:



Developer	community	–	Qlik	Branch
Qlik	Branch	(http://branch.qlik.com)	is	an	open	source	community	specifically
designed	for	developers.	It	is	a	place	to	share	and	collaborate	on	projects	and
innovations	created	with	Qlik	products	with	an	open	source	philosophy.	All
projects	posted	are	required	to	have	the	code	readily	accessible,	and	they	must	be
downloadable	directly	from	the	site.	In	short,	everything	on	the	site	is	free	to	use
and	free	to	modify	in	the	spirit	of	open	source:	

	

Additionally,	Qlik	Branch	is	a	place	to	find	and	download	solutions	for	your
projects	and/or	network	with	the	developers	to	help	extend	your	Qlik	Sense	or
QlikView	solutions.	The	site	contains	a	wide	variety	of	projects	leveraging	the
APIs	of	Qlik	Sense,	including	visualizations,	web	mashups,	server	automation,

http://branch.qlik.com


and	connectors,	to	name	just	a	few.

As	a	developer,	Qlik	Branch	is	a	great	place	to	get	started	and	involved	in	the
growing	community.	Many	of	the	projects	on	the	site	could	serve	as	a	great
starting	place	for	development	efforts.	Additionally,	a	developer	can	stay	up	to
date	with	API-related	news,	ask	questions	in	the	forum,	join	the	public	Slack
channel,	as	well	as	educate	themselves	with	the	resources	currently	available	or
planned	for	the	future.	Furthermore,	a	more	enterprising	developer	could	make	a
name	for	themselves	by	sharing	their	expertise	and	creating	valuable	content,
potentially	driving	business	their	way	as	the	customers	look	to	implement:	

	

We	look	forward	to	you	joining	the	thousands	of	developers	who	have	joined



together	in	building	world	class	visual	analytic	solutions.



Summary
In	summary,	one	of	the	strengths	of	Qlik	Sense	is	that	it	is	built	on	open	API	's
Qlik	Analytic	Platform	(QAP)	that	allows	customers	and	partners	to	extend	their
analytic	solutions.	This	chapter	has	provided	an	overview	and	some	interesting
examples	of	how	to	enrich	your	solutions	with	QAP.	It	is	not	meant	to	replace
the	Qlik	Sense	for	Developers	help	documentation	which	can	be	found	at
https://help.qlik.com/sense/2.1/en-us/developer/#Home-developer.htm,	but
rather	serve	as	an	introduction	for	power	users	who	seek	to	expand	their	skill
sets,	as	well	as	developers	who	are	new	to	Qlik	Sense.

In	the	next	chapter	of	this	book,	we	will	explore	the	key	features	of
administrating	your	Qlik	Sense	environment.

https://help.qlik.com/sense/2.1/en-us/developer/#Home-developer.htm


Chapter	9.	Administering	Qlik
Sense®
Having	established	how	to	develop	attractive	and	engaging	applications	with
Qlik	Sense,	it's	time	to	turn	our	attention	from	authors	and	business	users.
Instead,	we	will	consider	the	requirements	of	administrators.	In	this	chapter,	we
will	move	away	from	data	and	analysis	to	what's	needed	to	run	a	Qlik	Sense
installation.

In	this	chapter,	you	will	find	information	about	the	following	topics:

Architecture
Clustering	and	nodes
Licenses	and	tokens
Streams	and	security	concepts



The	Qlik	Sense®	architecture
Qlik	Sense	has	an	architecture	that	is	different	from	the	QlikView	Server
architecture.	Some	components	are	very	similar;	others	are	very	different.
Hence,	even	if	you	know	the	QlikView	architecture,	you	need	to	look	at	the
following	sections.	In	them,	you	will	find	an	overview	of	some	of	the	concepts
in	Qlik	Sense.



Services
When	you	install	the	Qlik	Sense	server,	you	will	install	seven	services.	These	are
the	cornerstones	of	the	architecture.	They	can	be	deployed	in	different	ways	to
suit	different	deployment	purposes.

The	Qlik	Sense	services	are	as	follows:

Qlik	Sense	Engine	Service	(The	QIX	engine):	This	is	the	application
service,	which	handles	all	application	calculations	and	logic.	Everything
that	concerns	the	data	analysis	is	handled	by	this	service.
Qlik	Sense	Printing	Service:	This	manages	the	Qlik	Sense	exports,
reporting,	and	printing.	This	is	new	for	Qlik	Sense	Version	2.
Qlik	Sense	Proxy	Service	(QPS):	This	manages	the	Qlik	Sense
authentication,	session	handling,	and	load	balancing.
Qlik	Sense	Repository	Service	(QRS):	This	manages	persistence	of	apps
and	the	synchronization	of	licensing,	security,	and	service	configuration
data.
Qlik	Sense	Repository	Database:	This	service	runs	a	PostgreSQL	database
used	by	the	QRS.
Qlik	Sense	Scheduler	Service	(QSS):	This	manages	the	scheduled	reloads
of	Qlik	Sense	apps	as	well	as	other	types	of	events,	for	example,	task
chaining.
Qlik	Sense	Service	Dispatcher:	This	is	a	service	controller	that	is	used	to
launch	and	manage	additional	Qlik	Sense	services.

In	a	standard	installation,	all	seven	services	run	on	the	same	computer,	and	this
works	fine	as	long	as	the	load	on	the	server	doesn't	become	too	heavy.

The	services	can	run	under	any	account,	but	should	preferably	run	under	an
account	dedicated	to	the	Qlik	Sense	services.



Clients
Qlik	Sense	has	two	different	clients:	the	hub	and	the	management	console
(QMC).

The	hub	is	used	to	access,	edit,	and	publish	apps.	It	always	runs	in	a	web
browser,	regardless	of	whether	you	use	a	desktop	computer,	tablet,	or
smartphone	to	access	it.

The	basic	Qlik	Sense	architecture

	

Qlik	Management	Console	(QMC)	is	used	for	all	types	of	administration.
QMC	is	a	web	page	found	at	https://<computer_name>/qmc/.



A	link	to	this	is	installed	in	your	Start	menu	during	the	installation.

The	QMC	start	page

	

In	QMC,	you	can	manage	and	monitor	everything	for	your	installation:	apps,
streams,	security,	users,	and	so	on.

To	the	left,	you	have	the	four	main	groups:	tools	to	manage	the	content,	tools	to
manage	resources,	tools	for	governance,	and	tools	to	configure	the	system.

The	QMC	is	a	multiuser	environment,	designed	for	the	delegation	of
administration	of,	for	example,	streams	to	authors,	if	this	fits	a	company's	work
process.



Applications
The	apps	are	subject-specific;	files	that	contain	data,	prepared	visualizations,
load	script,	and	so	on.	This	is	where	the	analysis	is	done.	From	a	user's
perspective,	an	app	is	organized	into	sheets,	sheet	objects	(visualizations),
bookmarks,	and	stories.	An	app	can	be	private	or	published	to	a	stream.

If	you	want	to	access	an	app	to	do	analysis,	you	can	access	it	through	the	hub.
However,	if	you	want	to	perform	any	administrative	task,	such	as	importing	or
publishing	an	app,	you	can	do	it	through	QMC.



Nodes
Qlik	Sense's	site	has	an	architecture	that	allows	a	distributed	deployment.	In
other	words,	you	can	have	several	computers,	each	with	a	Qlik	Sense
installation,	that	work	together	and	are	managed	as	one	coherent	server.	In	such
a	configuration,	each	computer	is	called	a	node	and	the	entire	installation	is
called	a	cluster.

The	installation	can	be	configured	so	that	data	is	synchronized	between	the
different	nodes,	and	so	that	the	appropriate	server	is	used	for	the	client	request.
The	purpose	is,	of	course,	to	increase	the	system	resilience	and	deployment
flexibility.



Streams
The	next	important	concept	in	Qlik	Sense	is	streams.	A	stream	is	a	dynamic,
collaborative	workgroup	that	is	used	when	publishing	applications.	Hence,	when
you	publish	an	app	to	a	stream,	you	publish	it	to	a	group	of	people.

A	stream	has	members,	security	rules,	and	tags.	It	enables	the	user	to	read	or
publish	apps,	sheets,	and	stories.	The	users	who	have	publishing	rights	to	a
stream	create	the	content	for	that	specific	stream,	and	the	users	who	have	read
access	are	the	consumers	of	the	apps.

The	Streams	sheet

	



Deployment	and	licensing
Deploying	a	Qlik	Sense	server	is	usually	straightforward,	but	there	are	still	a
couple	of	things	to	think	of.	The	first	question	is	about	clustering.



Single	node	or	multinode
Normally,	you	should	just	install	the	Qlik	Sense	server,	making	sure	that	it	is	set
as	a	central	node	during	the	installation.	Then,	you	will	get	a	single	node
installation.	However,	sooner	or	later	you	need	to	ask	yourself	a	question	about
clustering,	"How	many	servers	do	you	want	in	your	cluster?"	This	book	is	not	a
comprehensive	guide	to	clustering	issues;	it	will	only	point	out	the	basics	and	the
questions	you	need	to	ask.

In	a	standard	installation,	all	seven	services	run	on	the	same	computer,	and	this
works	fine	as	long	as	the	load	on	the	server	doesn't	become	too	heavy.	However,
as	soon	as	your	installation	starts	to	grow,	you	may	need	more	computers	to
handle	the	load.	If	so,	you	can	set	up	a	cluster	so	that	you	have	additional
computers	running	only	some	of	the	services	and	still	manage	the	entire	cluster
as	if	it	was	only	one	computer.

By	far,	the	most	common	case	is	that	Qlik	Sense	engine	(the	QIX	engine)	has	a
very	large	load,	either	due	to	many	users	or	because	some	applications	are	large.
Then,	it	might	be	a	good	idea	to	add	one	or	several	computers	and	use	a	separate
Qlik	Sense	engine	on	each	computer.

Another	case	is	that	you	have	several	physical	locations	and	want	one	node	in
each	location,	with	the	same	content	on	each	node.	This	way,	the	users	always
use	the	local	node.

One	of	the	computers	must	be	set	as	the	central	node,	that	is,	as	the	master.	Here,
you	enter	your	license	key	and	manage	the	entire	cluster.	Data	will	be
synchronized	from	this	node	to	other	nodes.

It	is	possible	to	use	the	same	entry	point—the	Qlik	Sense	proxy—for	the	entire
cluster	so	that	users	don't	notice	that	there	are,	in	fact,	several	computers.

On	the	central	node,	it	is	recommended	that	you	have	a	dedicated	QPS	and	QIX
that	are	used	specifically	for	the	QMC	and	not	for	the	hub.

In	addition,	the	central	node	must	have	the	QSS	installed	even	if	other	nodes
with	schedulers	are	added.	This	is	because	the	scheduler	on	the	central	node	is
considered	to	be	the	master	scheduler,	which	coordinates	all	scheduler	activities



within	the	site.

Hence,	when	defining	your	deployment	strategy,	you	should	try	to	answer	some
questions:

What	is	the	estimated	number	of	computers	needed	to	handle	the	number	of
apps	and	users	you	expect?
Should	the	users	use	the	same	proxy	so	that	you	can	set	up	rules	for	load
balancing?	Or	should	they	use	different	entry	points	in	the	different
locations?
Do	you	want/need	separate	computers	that	are	only	used	to	run	jobs,	for
example,	to	refresh	the	apps?

The	answers	will	help	you	decide	whether	you	need	a	cluster	of	Qlik	Sense
servers.	If	you	don't	know,	or	if	it	is	your	first	server	in	a	cluster,	you	should	just
install	the	Qlik	Sense	server	making	sure	that	it	is	set	as	the	central	node	during
the	installation.



License	and	access	passes
The	first	thing	you	need	to	do	after	installing	Qlik	Sense	is	to	enter	the	license
key	and	make	sure	that	you	get	a	valid	License	Enabling	File	(LEF)	from	the
Qlik	license	activation	server.	However,	this	is	not	enough	to	get	going.	You	also
need	to	assign	a	license	to	yourself.	Alternatively,	to	express	this	in	the	correct
terminology,	you	need	to	allocate	a	token	as	a	user	access	pass	for	yourself.

This	is	done	by	navigating	to	License	and	tokens	|	User	access.	Here,	you	can
click	on	the	Allocate	button,	select	a	user,	and	click	on	Allocate.	This	means
you	have	given	this	user	unlimited	access	to	the	Qlik	Sense	server.	Unlimited
means	unlimited	from	a	license	perspective—you	may	still	define	restrictions	on
this	user	from	a	security	perspective.

User	access	has	been	granted	to	one	of	the	authors

	



Tokens
The	reason	for	this	procedure	is	Qlik	Sense's	flexible	licensing	model.	In	the
QlikView	license	model,	you	bought	Named	CALs	or	some	other	license	from
Qlik,	and	that	was	then	the	license	you	had.	To	convert	from	one	type	of	CAL	to
another	was	not	possible,	unless	you	contacted	Qlik.

In	the	Qlik	Sense	model,	you	have	a	greater	degree	of	freedom.	Here,	you	decide
how	you	want	to	allocate	the	licenses	you	bought.	Some	are	allocated	to	the
equivalent	of	a	Named	CAL,	while	some	are	allocated	to	another	license	type.
As	a	consequence,	you	don't	buy	licenses.	Instead	you	buy	tokens,	which	is	a
kind	of	currency	that	you	can	convert	into	licenses	at	a	later	stage.	In	the	initial
configuration,	no	tokens	are	assigned	to	be	used	and	hence,	the	need	to	allocate	a
token	to	yourself.

Another	consequence	is	that	the	terminology	has	changed.	A	Named	CAL	is	no
longer	called	Named	CAL.	Instead,	it	is	called	a	user	access	pass.	So	in	the
preceding	case,	you	have	effectively	given	yourself	a	Named	CAL.

The	Qlik	Sense	user	access	pass—and	the	QlikView	Named	CALs	for	that
matter—is	a	general	unlimited	license	that	should	be	given	to	frequent	users,	that
is,	users	that	analyze	data	regularly,	many	times	every	month	or	perhaps	even
daily.

In	Qlik	Sense,	there	is	a	second	license	type	that	is	designed	to	cover	the	needs
of	infrequent	users.	It	is	similar	to	the	Usage	CAL	that	exists	in	QlikView.	It	is
called	login	access	pass.	A	login	access	pass	is	equivalent	to	one	login	per
month,	that	is,	the	login	counter	is	refreshed	so	that	a	new	login	is	possible	every
28th	day.

You	can	create	login	access	passes	in	batches	of	10,	and	10	login	access	passes
cost	1	token.	These	10	logins	can	be	used	anyway	you	want.	They	can,	for
example,	be	used	by	10	different	people	that	log	in	once	per	month	or	by	one
single	user	who	logs	in	10	times	every	month.



Login	access	passes	can	be	created	in	pools	for	different	groups	of	people

	



Access	rules
Typically,	you	would	use	several	tokens	to	create	a	pool	of	logins	that	can	be
dedicated	for	a	group	of	people	within	your	domain.	You	can	create	access	rules
both	for	user	access	passes	and	login	access	passes,	and	you	should	do	this	for
your	own	benefit.	This	means	that	you	can,	for	instance,	say	that	anyone	in	the
finance	department	will	get	a	user	access	pass	when	logging	on,	whereas	the
users	of	another	department	will	share	the	login	access	passes	of	a	specific	pool.

Hence,	when	you	create	the	user	and	login	accesses	you	want,	you	can	get	an
overview	of	the	License	usage	summary	page,	where	you	can	clearly	see	the
number	of	used	tokens	and	how	many	you	have	left	to	allocate.

You	can	clearly	see	how	many	tokens	you	allocated	to	licenses,	and	how	these
are	distributed	over	the	two	access	types	in	the	following	screenshot:

The	License	usage	summary	in	QMC

	



Management	and	monitoring
So	far,	this	chapter	has	dealt	with	managing	the	installation	and	the	licenses,	but
very	little	has	been	mentioned	about	the	real	purpose	of	the	Qlik	Sense
administration,	which	is,	How	to	handle	data	and	the	analysis	of	data?	How	to
handle	the	applications,	the	users,	the	data	connections,	the	distribution,	and	so
on?	This	section	will	cover	these	areas.



Importing	and	managing	apps
Once	the	Qlik	Sense	server	is	deployed,	you	might	want	to	import	an	app	that
you	have	created	in	Qlik	Sense	Desktop.	This	is	something	that	you	can	do	in	the
Apps	sheet.	Look	for	the	Import	button	at	the	bottom	of	the	screen.

Importing	an	app	created	in	Qlik	Sense	Desktop	in	the	Apps	screen

	

Once	imported,	you	can	set	the	owner	of	the	app.	Then,	it	will	appear	in	the	My
work	area	in	the	hub	of	the	owner.	However,	the	app	is	still	not	published,	which
means	other	users	cannot	see	it.

When	you	publish	it,	you	move	the	app	from	My	work	to	another	stream,	and
once	it	is	published,	its	layout	is	fixed	and	cannot	be	changed.



Once	an	app	is	published,	the	app	overview	in	the	hub	changes

	

This	is	obvious	if	you	look	at	the	app	overview	in	the	hub.	Here,	you	now	have
two	rows	of	sheets:	one	with	sheets	that	are	fixed	and	public,	and	another	with
private	sheets	that	aren't	visible	to	other	people.

You	can	also	see	this	difference	on	the	sheet	listing	the	app	objects.	This	sheet
lists	all	sheets	and	stories,	and	QMC	clearly	indicates	whether	an	object	is	public
and	who	the	owner	is.

The	user	who	creates	an	app	is	automatically	designated	as	the	owner	of	the	app
and	its	app	objects.	The	app	objects	are	published	when	the	app	they	belong	to	is
published.	However,	the	users	can	add	private	app	objects	to	the	apps	and	share
them	by	publishing	the	app	objects	from	Qlik	Sense.	When	this	is	done,	the	app



overview	in	the	hub	gets	three	rows	of	sheets,	as	shown	in	the	following
screenshot:

	



Importing	extensions
As	you	saw	in	the	previous	chapter,	it	is	very	simple	to	create	additional
visualizations,	extensions,	in	Qlik	Sense.	To	use	them,	you	need	to	import	them
to	your	Qlik	Sense	server.

All	you	need	to	do	is	to	navigate	to	the	Extensions	sheet.	Look	for	the	Import
button	at	the	bottom	of	the	screen.	By	clicking	on	this	button,	you	can	browse	to
the	location	of	the	ZIP	file	containing	the	extension	and	import	it.

	



Users	and	user	directories
As	soon	as	you	want	to	manage	the	Qlik	Sense	server	in	terms	of	ownership	and
access	rights,	you	need	to	have	your	users	defined.	Normally,	these	are	already
defined	in	a	user	directory,	for	example,	in	Windows	Active	Directory.	Hence,
you	want	to	reuse	these	definitions.

On	the	User	directory	connectors	page,	you	can	define	several	sources	for	your
users	and	user	groups.	You	need	to	do	this	and	sync	at	least	one	of	them	before
you	can	start	distributing	licenses	and	access	rights	to	your	user	groups.

The	users	are	managed	on	the	Users	sheet.	However,	when	you	first	start	Qlik
Sense,	the	list	of	users	is	fairly	short:	just	you	and	a	couple	of	system	users.	To
populate	the	list	of	users,	you	have	two	options:

Define	a	user	directory	connector	and	sync	the	users	in	it
Define	rules	for	the	access	passes	so	that	the	users	can	assign	licenses	to
themselves	without	you	having	to	do	it



Defining	streams
Once	you	have	created	or	imported	an	app,	you	may	want	to	publish	it.
Publishing	an	app	means	that	you	move	it	from	your	personal	workspace	to	a
stream	of	your	choice.

You	have	already	seen	the	streams	in	the	hub,	where	they	appear	to	the	left	as
groups	of	apps.	My	work	is	your	personal	stream	that	no	one	else	can	see.

Streams,	as	seen	from	the	hub

	

An	app	can	be	published	to	only	one	stream.	By	default,	Qlik	Sense	includes	a
stream	called	Everyone,	and	you	can	create	any	number	of	additional	streams
from	the	Streams	sheet.	You	should	most	likely	create	one	stream	for	each
distinct	user	group.	Use	the	Create	new	button	in	the	upper-right	corner	of	the
screen.

When	creating	your	stream,	you	have	the	option	to	add	a	security	rule,	making
the	stream	available	only	to	some	users.	This	is	a	very	important	security	feature.
One	obvious	example	is,	if	you	have	a	set	of	apps	that	should	be	seen	only	by	the
human	resources	department.	Then,	you	should	create	a	stream	for	this	group
and	use	the	user	information	from	the	directory	service	to	give	access	to	this
stream.



Another	common	case	is	if	you	want	to	delegate	the	administration	of	a	stream
to	a	group	of	users.	The	following	screenshot	shows	a	security	rule	that	grants
access	to	the	Human	Resources	stream	and	to	all	users	belonging	to	the	HR
user	directory:

	



Connectivity	management
Connectivity	means	the	connection	to	source	data.	Source	data	can	be	ERP
systems	of	different	kinds,	file	folders,	web	addresses	containing	tables,	and	so
on.	When	running	a	Qlik	Sense	script,	data	is	pulled	from	the	different	sources
into	the	Qlik	Sense	app	so	that	it	can	be	analyzed	at	a	later	stage.

With	Qlik	Sense,	it	is	easy	to	get	an	overview	of	all	data	connections	used,
something	that	used	to	be	a	challenge.	By	opening	the	Data	Connections	sheet,
you	get	a	list	of	the	data	connections	used	in	different	apps.

The	data	connections	can	be	managed	and	security	can	be	set	separately	for
different	connections.	It	is,	for	example,	possible	to	prevent	some	users	from
using	a	specific	data	connector.	This	way,	you	can	control	the	usage	and	ensure
that	data	is	used	in	the	correct	way.



Tasks
On	the	Tasks	page,	you	define	the	jobs	that	need	to	run	in	the	background.	These
are	of	two	kinds:	reload	tasks	and	user	synchronizations.

The	reload	tasks	are	necessary	to	refresh	data	in	the	apps,	which	means	you	need
to	set	up	tasks	so	that	they	are	refreshed	with	the	frequency	you	want.	Most	apps
should	be	refreshed	once	a	day,	but	some	others	only	need	to	be	refreshed	once	a
month.	There	are	both	advantages	and	disadvantages	with	a	frequent	refresh	of
the	data.	If	it	is	refreshed	rarely,	for	example,	once	per	month,	the	users	will	not
have	the	latest	data.

On	the	other	hand,	if	you	refresh	data	too	often,	such	as	once	per	hour,	you	will
have	a	heavy	load	on	your	server	handling	the	reload	tasks.	You	will	also	create
a	situation	where	two	users	in	a	meeting	may	have	different	opinions	about	what
the	correct	number	for	a	specific	KPI	is,	since	they	looked	at	two	different
versions	of	the	app.	One	looked	at	the	app	an	hour	ago,	and	the	other	just	10
minutes	ago.	This	does	not	create	an	understanding;	rather,	it	creates	confusion,
since	you	have	two	versions	of	the	truth.

You	should	ask	yourself	whether	the	users	benefit	most	from	having	as	fresh
data	as	possible,	or	whether	they	benefit	more	from	having	one	truth.	A	good
balance	is	to	have	one	refresh	per	day.	The	users	will	learn	this,	and	refer	to	the
numbers	as	today's	numbers	and	yesterday's	numbers.

User	synchronization	is	necessary	to	refresh	data	from	the	directory	service,	so
that	Qlik	Sense	is	aware	of	any	changes	made	to	groups	and	users.

A	task	can	be	triggered	by	either	a	scheduler	or	the	completion	of	another	task.
This	way,	you	can	get	task	chaining.



System	management
The	group	to	the	bottom	left	in	QMC	relates	to	system	settings.	Here,	you	can
configure	the	nodes,	engines,	proxies,	schedulers,	repositories,	sync	rules,	and
certificates.	With	these,	you	can	configure	how	the	Qlik	Sense	server	should
work	on	different	computers.	You	can	do	really	advanced	things	here,	but	this	is
beyond	the	scope	of	this	book.



Security	rules
You	can	set	access	control	for	most	of	the	preceding	settings,	for	example,	only
some	users	should	be	able	to	see	a	specific	application;	only	some	users	should
be	allowed	to	use	a	specific	data	connection;	all	users	should	be	allowed	to
create	data	connectors	to	databases,	but	not	to	file	folders;	only	some	users	are
allowed	to	log	in	using	a	specific	pool	of	login	access	passes;	and	so	on.

When	doing	so,	you	should	think	of	the	following	user	types:

Developer:	These	are	users	who	are	allowed	to	create	apps,	sheets,	stories,
objects,	and	who	can	use	and	create	data	connections
Contributor:	These	are	users	who	are	allowed	to	create	stories	and	sheets
for	published	apps	but	are	not	allowed	to	create	new	apps
Consumer:	These	are	users	who	can	only	use	apps,	sheet,	stories,	objects,
and	so	on	but	are	not	allowed	to	create	content

These	rules	are	called	security	rules,	even	though	they	do	not	always	pertain	to
true	security.	They	can	be	edited	on	each	sheet,	for	example,	the	rules	for
streams	can	be	edited	on	the	Streams	sheet,	but	there	is	also	an	overview:	the
security	rules	have	a	sheet	of	their	own	where	they	can	be	edited.

	



When	you	create	a	security	rule	using	the	basic	interface,	you	create	a	property-
value	pair	that	grants	users	the	right	to	do	something.	In	the	preceding
screenshot,	all	users	are	granted	the	right	to	create	data	connections	that	aren't
file	folders.

The	rules	are	property-based	and	the	properties	are	used	to	describe	the	parties
involved	in	an	access	request.	In	the	usual	case,	the	parties	involved	are	the	user
making	the	request,	the	environment	the	request	is	made	from,	and	the	resource
the	request	applies	to.

Each	property	is	defined	in	a	property-value	pair	such	as	group	=	Sales	or
resourcetype	=	App.	Each	request,	in	turn,	includes	the	property-value	pairs	for
the	users,	environments,	and	resources	involved	in	the	request	together	with	the
action	that	the	person	making	the	request	wishes	to	perform	on	the	resource,	for
example,	create,	update,	or	delete.

The	four	components	in	security	rules:	user,	environment,	resource,	and	action

	

You	can	create	rules	based	on	the	property-value	pairs.	This	means	requests	for
an	action	on	a	resource	are	granted	only	if	the	property	value	of	the	requester
matches	the	property-value	conditions	defined	in	a	security	rule	for	that
resource.



A	rule	can	read	as	a	sentence	in	the	following	way:	Allow	the	requester	to
[action]	the	[resource]	provided	that	[conditions].

Each	rule	must	describe	the	action	and	the	resource	or	resources	the	action
should	be	applied	to.	If	you	don't	define	any	rules	for	a	resource,	no	users	will
have	access	to	that	resource.

By	design,	security	rules	are	written	to	include,	not	exclude,	users.	Users	who
are	not	included	in	security	rules	will	be	denied	access.	So,	security	rules	must
be	created	to	enable	users	to	interact	with	Qlik	Sense	content,	data	connections,
and	other	resources.

Hence,	the	rules	define	when	access	is	granted,	and	there	is	no	rule	that	can	deny
a	user	access.	If	there	is	a	rule	that	allows	the	user	to	do	something,	they	are
allowed	to	do	so.	So,	if	you	want	to	deny	a	user	something,	you	must	delete	the
rule	that	grants	access,	or	edit	the	rule.



Monitoring
Delivered	together	with	Qlik	Sense,	you	will	also	find	two	monitoring	Qlik
Sense	applications:	the	License	Monitor	and	Operations	Monitor.	These	read
the	log	files	of	Qlik	Sense	and	give	you	a	good	overview	of	the	state	of	the	Qlik
Sense	server.

The	following	screenshot	shows	the	Operations	Monitor:	

The	Operations	Monitor

	

The	following	screenshot	shows	the	License	Monitor:	



The	License	Monitor

	



Security
The	security	in	Qlik	Sense	consists	of	many	parts.	In	the	QMC,	there	is	a	system
with	security	rules	for	almost	everything	you	can	do,	not	only	data	access.	There
are	also	rules	to	change	the	setup	or	rights	to	publish	apps	or	sheets.	This	implies
protection	of	the	platform,	that	is,	how	the	Qlik	Sense	platform	itself	is	protected
and	how	it	communicates	and	operates.

However,	security	as	a	concept	goes	beyond	that.	So	let's	start	from	the
beginning.



Authentication	and	authorization
The	two	most	basic	concepts	in	security	are	authentication	and	authorization.
Authentication	answers	the	question,	"Who	is	the	user	and	how	can	the	user
prove	it?"	Authorization	answers	the	question,	"What	does	this	specific	user
have	access	to,	and	what	are	they	allowed	to	do?"

In	Qlik	Sense,	authentication	and	authorization	are	two	distinct,	unconnected
actions.	In	addition,	the	sources	of	information	used	for	authentication	do	not
have	to	be	the	same	as	for	authorization,	and	vice	versa.

Qlik	Sense	uses	standard	authentication	protocols	to	authenticate	every	user
requesting	access,	for	example,	Windows	Integrated	Authentication,	HTTP
headers,	and	ticketing.	If	you	want	a	customized	authentication,	you	can
configure	this	in	the	proxy,	but	the	details	of	this	are	beyond	the	scope	of	this
book.

Authorization	on	the	other	hand,	is	the	procedure	of	granting	or	denying	user
access	to	resources.	A	user	perhaps	has	the	right	to	see	a	resource	or	perhaps
they	don't.	When	it	comes	to	data,	the	right	to	see	data	can	be	set	with	different
granularity.	A	user	may	see	an	app	or	they	may	not;	and	once	opened,	the	user
may	be	restricted	to	see	some	parts	of	the	app	but	not	other	parts.

Hence,	authorization	can	be	defined	on	several	levels:

Firstly,	there	is	the	administrator	access	control.	Which	rights	are	needed
for	the	different	roles	and	responsibilities	of	the	administrators?	This	is
controlled	in	the	security	rules	as	previously	described.
Secondly,	there	is	app-level	authorization.	Is	the	user	allowed	to	access	the
app?	Which	functions	in	the	app	is	the	user	allowed	to	use,	for	example,
printing,	exporting,	and	creating	snapshots?
Thirdly,	there	is	data-level	authorization.	Is	the	user	allowed	to	see	all	of	the
data	in	the	app	or	just	parts	of	it?



Content	security
Content	security	is	a	critical	aspect	of	setting	up	and	managing	your	Qlik	Sense
system.	QMC	enables	you	to	centrally	create	and	manage	security	rules	for	all
your	Qlik	Sense	resources.	Security	rules	define	what	a	user	is	allowed	to	do
with	a	resource,	for	example,	read,	update,	create,	or	delete.

Additionally,	there	is	data	reduction	by	a	section	access	in	the	script	that	handles
data-level	authorization.	The	section	access	is	an	app-defined,	data-driven
security	model,	intimately	connected	with	the	data	model.	It	allows	the
implementation	of	row-	and	field-level	data	security.

In	data-level	authorization,	the	authentication	information	also	exists	in	the	data
model	(albeit	in	a	hidden	part	of	it).	It	could	be,	for	example,	a	username.

The	selection	propagates	to	all	the	other	tables	in	the	standard	QlikView	manner
so	that	the	appropriate	records	in	all	tables	are	excluded,	wherein	Qlik	Sense
reduces	the	scope	for	this	user	to	only	the	possible	records.	This	way,	the	user
will	only	see	data	pertaining	to	the	countries	to	which	they	are	associated.

	



Summary
In	this	chapter,	we	have	seen	that	with	the	QMC,	you	can	manage	a	Qlik	Sense
installation	very	efficiently.	It	includes	a	wide	range	of	functions	that	allow	you
to	configure	your	system	the	way	you	want	it,	and	it	allows	you	to	set	access
rights	on	not	only	apps	but	also	on	streams,	licenses,	and	data	connectors.

Since	QMC	is	based	on	standard	web	technology,	you	can,	in	principle,	use	any
browser	to	run	it,	and	it	integrates	well	with	other	systems	used	to	manage
software	and	hardware	components.	In	addition,	you	can	use	APIs	to	create
custom	management	utilities.

To	end	this	book,	we'll	be	looking	at	putting	Qlik	Sense	into	practice	for	active
data	discovery	as	we	spend	the	last	chapters	analyzing	the	examples	of	sales,
HR,	travel	expenses,	and	demographics.



Chapter	10.	Sales	Discovery
Throughout	this	book,	we	have	shared	the	driving	forces	in	the	creation	of	Qlik
Sense	and	key	capabilities	to	aid	in	helping	organizations	make	better	business
decisions.	This	chapter	is	the	first	of	four	that	will	apply	Qlik	Sense	to	the
challenges	of	analyzing	sales	performance	within	your	organization.	This
example	and	many	others	are	available	for	you	to	explore	live	at	http://sense-
demo.qlik.com.	Please	bookmark	this	link	as	additional	demonstrations	and
examples	are	constantly	being	added	and	updated.	Now,	let's	turn	our	attention	to
the	following	challenge	of	sales	analysis	and	how	Qlik	Sense	addresses	this
common	business	challenge.

In	this	chapter,	we	will	cover	the	following	topics:

Common	sales	analysis	problems
The	unique	way	Qlik	Sense	addresses	these	problems
How	the	Sales	Discovery	application	was	built

http://sense-demo.qlik.com


The	business	problem
Analyzing	sales	information	can	be	a	difficult	process	for	any	organization,	and
is	critical	to	meeting	sales	expectations	and	understanding	customer	demand
signals.	What	makes	sales	analysis	so	difficult	is	that	many	perspectives	can	be
taken	on	the	enormous	amount	of	information	that	is	captured	during	the	sales
process.

Some	key	questions	include:

Who	are	our	top	customers?
Who	are	our	most	productive	sales	representatives?
How	are	our	high	margin	products	selling	and	to	whom?

The	key	thing	here	is	that	during	the	analysis	process,	one	answered	question
always	leads	to	further	questions	depending	on	the	results;	in	other	words,	the
analysis	process's	diagnostics.	These	paths	to	discovery	cannot	be	precalculated
or	anticipated.	With	this	in	mind,	let's	take	a	look	at	how	the	Sales	Discovery
application	seeks	to	meet	these	requirements.



Application	features
Qlik	Sense's	associative	model	allows	users	to	answer	the	common	questions
outlined	in	the	preceding	section	through	the	selection	of	elements	in	filter
boxes,	but	more	importantly,	to	drive	follow-up	questions.	Often,	this	relies	on
Qlik	Sense's	ability	to	instantly	identify	the	associated	and	nonassociated	data,
which	is	also	known	as	The	Power	of	Gray	after	the	color	assigned	to
nonassociated	elements	highlighted	in	Chapter	3,	Empowering	Next	Generation
Data	Discovery	Consumers.	The	following	are	two	key	beginner	questions	that
will	drive	additional	questions	as	the	analysis	begins.

Key	questions	include:

Who	are	our	top	customers?
What	are	these	customers	buying?
Where	are	these	customers	buying	from?
Are	the	products	getting	there?
Who	are	our	bottom	five	customers?

Can	we	cross-promote	products?
Who	are	our	most	productive	sales	representatives?
What	products	are	the	most	productive	sales	representatives	selling?
Whom	are	they	selling	to?
Which	regions	are	they	being	sold	in?

Before	we	begin,	let's	review	the	main	sheets	in	the	Sales	Discovery	application.
As	noted	in	the	following	screenshot,	the	application	is	made	up	of	the
Performance	Dashboard,	Top	Customers,	Shipments,	Sales	and	Margin,	US
Regional	Analysis,	Transactions,	and	finally,	Past	Dues	sheets:



The	application	overview

	

Given	the	nature	of	the	associative	model,	all	filters	are	global,	allowing	a	user
to	explore	each	application	sheet	in	the	context	of	the	selected	filters	and
associative	results.	Filters	serve	as	a	way	to	ask	questions	to	the	Qlik	Sense
application.



Who	are	our	top	customers?
So,	with	that	said,	let's	begin	with	our	first	question,	"Who	are	our	top
customers?".	This	is	a	typical	question	that	can	be	handled	by	a	number	of	BI
solutions	in	the	marketplace.

Our	top	customers

	

In	the	preceding	screenshot,	we	can	see	that	the	top	five	customers	in	terms	of
sales	are	Tandy	Corporation,	Paracel,	Acer,	Talarian,	and	Boston	and
Albany	Railroad	Company.



The	360-degree	customer	view
Now	is	where	things	get	interesting	in	Qlik	Sense	and	the	associative	experience.
Once	we	select	these	customers,	as	shown	in	the	following	screenshot,	we	get	a
360-degree	view	of	them	across	the	application.	Immediately,	we	can	see	which
representatives	have	sold	to	these	accounts,	the	trended	revenue,	year-on-year
sales,	as	well	as	in	what	percentage	of	the	regions	these	sales	were	made.	The
percentage	of	the	regions	(noted	by	the	green	arrow)	where	the	sales	were	made
is	highlighted	in	the	filter	list	shade,	which	shows	approximately	25	percent	of
the	regions:	

Top	five	customer	sales

	



Filtering	customers
The	preceding	information	leads	naturally	to	the	next	question:	what	are	these
customers	buying	and	from	where?

Again,	because	of	Qlik's	associative	indexing	engine,	this	information	is	linked
together	automatically.	Based	on	this,	let's	view	the	impact	that	filtering	these
top	five	customers	has	on	sales	and	gross	margins,	as	shown	in	the	following
screenshot.	Note	that	the	customer	filter	box	with	selections	is	globally	available
at	the	top	of	the	screen.	In	the	Sales	and	Margin	sheet,	we	can	see	that	Canned
Foods	and	Produce	account	for	the	largest	sales,	and	Baking	Goods	has	the
highest	gross	margin	with	just	over	50	percent.

What	are	these	customers	buying?

	

As	we	continue	our	analysis,	the	next	question	that	is	most	likely	to	arise	is
where	are	these	sales	occurring?	Again,	this	data	is	available	in	the	sales
transaction,	and	Qlik's	associative	indexing	engine	makes	this	easily	available



and	interactive	within	the	application.	Note	that	in	the	next	figure,	the	US
Regional	Analysis	sheet	displays	the	sales	by	states,	customers,	and	the
important	shipments	as	well:

Where	are	these	customers	buying	from?

	
Reviewing	shipments	for	top	customers

We	can	see	in	the	preceding	screenshot	that	Minnesota	and	Ohio	account	for	all
top	five	customer	sales	that	are	between	5.94	million	and	11.89	million.	After
reviewing	this	sheet,	a	number	of	questions	can	arise	and	be	analyzed.	Let's
follow	one	specific	thought	on	shipments.	Are	products	getting	there?

As	we	know,	shipments	play	a	critical	role	in	a	sales	process	because	without
shipping	you	cannot	book	revenue	and	continue	to	grow	sales.	With	this	in	mind,
let's	turn	our	attention	to	the	Shipments	sheet	as	shown	in	the	following
screenshot.	From	here,	we	can	see	the	trending	shipment	information	on	two
levels:	%	On	time	shipments	and	Number	of	shipments	late	vs	on	time.
Additionally,	we	see	that	the	on-time	shipment	goal	is	86%.	Based	on	this,	we



can	see	problems	in	meeting	these	goals	in	September,	October,	and	November
2014:

Are	the	products	getting	there?

	
Reviewing	the	bottom	five	customers

Now,	let's	turn	our	attention	to	an	equally	important	topic:	who	are	our	bottom
five	customers	and	how	can	we	increase	sales	to	them?	In	the	following
screenshot,	we	can	see	the	bottom	five	customers:	Edna	Design,	Teammax,
Champion	International,	Fokas,	and	Renegade	Info	Crew.	Our	sales	to	them
are	2	million	products	or	less	and	they	purchase	lower	margin	products:



Who	are	our	bottom	five	customers?

	

While	taking	a	note	of	this,	let's	dig	in	a	bit	deeper	on	the	products	they
purchase.	In	the	following	screenshot,	we	can	see	that	these	customers	purchase
a	large	amount	of	Produce	and	Snack	Foods.	Now,	the	question	arises—can	we
cross-promote	products	to	increase	our	sales	from	these	customers?



Can	we	cross-promote	products?

	

Based	on	the	information	gleaned,	we	can	see	some	opportunities	to	cross-
promote	products.	For	example,	with	the	high	purchase	of	Produce	by	these
customers,	perhaps	a	cross-promotional	program	that	introduces	Eggs	(at	a	67%
margin)	to	them	to	supplement	their	produce	may	raise	sales.	Additionally,	with
strong	sales	of	Snack	Foods,	perhaps	we	can	expand	the	sales	of	Baked	Goods
(at	a	52%	margin)	to	these	customers	as	well.	Now,	let's	turn	our	attention	to	the
analysis	of	sales	representatives.



Who	are	our	most	productive	sales
representatives?
As	often	is	the	case,	a	key	area	for	analysis	is	the	performance	of	sales
representatives.	So,	let's	turn	our	attention	to	the	Sales	and	Margin	sheet	in	our
Sales	Discovery	application,	as	shown	in	the	following	screenshot.	Here,	we	can
see	that	Judy	Thurman,	Steward	Wind,	and	Lee	Chin	lead	the	sales	team	in
terms	of	revenue:

Who	are	our	most	productive	sales	reps?

	
Analyzing	products

The	next	question	that	arises	is	what	products	are	they	selling?	As	we	can	see,
Canned	Foods	and	Produce	are	the	top	selling	products.	After	identifying	these
sales	representatives	and	top	selling	products,	we	will	need	to	combine	this
information	with	an	understanding	of	which	customers	are	driving	these	sales.



What	products	are	they	selling?

	
Analyzing	customer	sales

Navigating	back	to	the	Top	Customers	sheet,	we	can	see	from	which	customers
these	sales	are	generated.	Perhaps,	while	working	with	these	sales
representatives,	additional	promotions	can	be	developed	to	expand	the	sales	of
products	such	as	Canned	Products	to	these	customers.



Who	are	they	selling	to?

	

The	final	area	to	help	improve	sales	representative	performance	is	to	analyze
where	these	products	are	being	sold.	In	the	US	Regional	Analysis	sheet,	we	can
see	that	Sales	by	State,	Customers,	and	Ships	to	are	nicely	dispersed,	and
additional	information	is	not	necessary	for	the	next	step:



What	regions	are	they	selling	to?

	

As	you	can	see,	the	Sales	Discovery	application	provides	a	360-degree	view	of	a
sales	analysis.	This	is	primarily	driven	by	Qlik's	associative	indexing	engine	that
drives	all	Qlik-based	applications.	Additionally,	like	most	analysis	processes,	the
path	to	discovery	of	new	information	cannot	be	prestaged	but	rather	unfolds
based	on	the	next	question	asked.	This	is	where	Qlik	Sense	excels	in	enabling	a
level	of	interaction	with	data	to	drive	insight	and	is	only	limited	by	the	data	that
is	available.	Now,	let's	turn	our	attention	to	how	this	application	was	built.



Building	the	application
Let's	start	our	review	of	the	heart	of	a	Qlik	Sense	application,	the	data	model.	As
you	can	see	from	the	following	screenshot,	there	are	12	tables	in	the	Sales
Discovery	associative	model.	At	the	heart	of	this	application	is	the
SalesDetails	table.	All	these	tables	were	created	through	Data	Load	Editor,
which	was	covered	in	Chapter	5,	Authoring	Engaging	Applications.	It	is	worth
noting	that	Qlik	and	Qlik	partners	provide	both	general-purpose	connectors	and
specialized	connectors	to	access	a	broad	array	of	data	sources.

The	Sales	Discovery	model

	

Let's	dig	a	bit	deeper	into	the	key	tables.	The	key	tables	that	drive	this
application	are	covered	in	the	upcoming	sections.

The	SalesDetails	table

The	SalesDetails	table	contains	all	the	key	information	about	the	sales
transaction	for	a	specific	order.	This	includes	information	such	as	the	order



number,	date,	and	so	on,	as	shown	in	the	following	screenshot:

The	SalesDetails	table

	
The	Customers	table

The	Customers	table	contains	all	the	key	information	about	the	customer:
channel,	region,	account	management,	and	so	on:

The	Customers	table

	
The	AggSales	table

The	AggSales	table	contains	all	the	sales	KPI	information	and	is	associated	with
the	model	so	that	sales	information	is	available	by	customer,	product,	region,	and
so	on:



The	AggSales	table

	
US	States	ISO	CODE	2	polygons

The	US	States	ISO	CODE	2	polygons	table	drives	the	map	visualization	in	the
US	Regional	Analysis	sheet.	The	key	field	is	defined	by	the	state,	which	drives
the	associative	sections,	and	the	field	US	States_Area	is	an	imported	Keyhole
Markup	Language	(KML)	file	that	contains	the	map's	geographic	information.
This	is	stored	as	blob	data	in	the	model,	and	the	map	object	interprets	this
information	when	used	in	a	sheet.	This	table	is	shown	in	the	following
screenshot:

The	US	States	ISO	CODE	2	polygons	table

	



Analyzing	the	Sales	Discovery	Library
Now,	let's	turn	our	attention	to	what	has	been	exposed	in	the	Sales	Discovery
Library	by	the	developer	to	facilitate	the	creation	and	sharing	of	personal	sheets.

Dimensions

In	the	next	screenshot,	we	can	see	the	dimensions	that	were	created.	One
particular	dimension	that	needs	attention	is	the	Region	>	Cust	dimension,	which
provides	a	drill-down	navigation	from	Region	Name	to	Customer.	This
capability	usually	requires	extensive	modeling	or	complex	scripts	in	other	BI
software	products,	but	with	Qlik	Sense,	this	is	a	simple	selection	process	when
creating	a	dimension.	This	is	another	example	of	the	power	of	Qlik's	associative
indexing	engine	in	action,	but	this	time,	easing	the	development	of	navigation
within	the	application.



Dimensions

	
Measures



The	next	area	to	cover	is	Measures.	These	are	calculated	expressions	that	most
often	form	the	KPIs	within	an	application.	In	the	following	screenshot,	we	can
see	the	list	of	measures	that	are	used	and	exposed	to	contributors	to	allow	them
to	create	private	sheets.	Note	that	hovering	the	pointer	over	any	of	these	objects
makes	a	preview	popup	appear	to	provide	additional	context.	In	this	case,	you
can	see	how	the	measure	is	calculated.	The	following	screenshot	shows



Measures:	

Measures

	



Additionally,	the	following	table	contains	the	measure	definitions	that	directly	tie
to	the	KPIs	used	in	this	application:

Measure Calculation

Avg	Sales	per
customer

Sum	([Sales	Amount])	/	Count(distinct	[Customer])

GPM% Sum	({<[Product	Group	Desc]	=	{*}>}[Sales	Margin	Amount])	/	Sum

({<[Product	Group	Desc]	=	{*}>}[Sales	Amount])

Margin
Variation

(Sum	([YTD	Sales	Margin	Amount])	/	sum	([LY	YTD	Sales	Margin	Amount]))	-	1

Sales Sum	([Sales	Amount])

Sales	Goal Sum	([YTD	Budget	Amount])

Sales	LY	YTD Sum	([LY	YTD	Sales	Amount])

Sales	Quantity Sum	([Sales	Quantity])

Sales	Variation (sum	([YTD	Sales	Amount])	-	sum	([LY	YTD	Sales	Amount]))	/	sum	([LY	YTD

Sales	Amount])

Sales	vs
Budget

Sum	([YTD	Sales	Amount])	/	Sum	([YTD	Budget	Amount])	-	1

Sales	YTD Sum	([YTD	Sales	Amount])

Visualizations

The	last	category	of	objects	in	Library	(Master	items)	is	Visualizations.	These
are	preformed	visualizations	that	are	typically	the	most	popular	or	requested
visualizations.	They	are	defined	to	help	facilitate	a	user's	analysis	and	can	be
easily	dragged	and	dropped	onto	a	private	sheet.	Here,	we	see	a	trend	line	chart
for	Number	of	shipments	vs	late	vs	on	time.	Each	of	these	visualizations
contains	predefined	dimensions,	measures,	and	chart	definitions:	



Visualizations

	



Summary
In	summary,	Qlik	Sense	provides	unique	capabilities	to	meet	the	challenging
task	of	analyzing	sales	data.	Without	the	capabilities	offered	by	Qlik,	this	task
can	be	difficult	due	to	the	size	of	the	data	and	the	many	perspectives	that	can	be
taken	in	trying	to	understand	customer	buying	habits,	sales	representative
productivity,	and	the	responsive	nature	of	the	organization	in	meeting	customer
needs.	Qlik's	associative	indexing	engine	powers	this	exploration.	This	means
meeting	these	requirements	is	no	longer	challenging	at	all.

In	the	next	chapter,	we	will	explore	how	Qlik	Sense	will	meet	the	needs	of
Human	Resource	Discovery.



Chapter	11.	Human	Resource
Discovery
Just	like	the	previous	chapter,	this	chapter	will	show	you	how	to	apply	Qlik
Sense	to	the	challenges	of	analyzing	real	data.	This	chapter's	example	and	many
others	are	available	for	you	to	explore	on	http://sense-demo.qlik.com.	Again,
make	sure	you	bookmark	this	link,	as	more	demonstrations	and	examples	are
constantly	being	added	and	updated.

This	chapter	is	about	the	analysis	of	human	resources	data,	and	it	covers	the
following	topics:

General	information	about	common	KPIs
What	a	typical	data	model	would	look	like
An	example	of	how	to	use	the	global	selector
Examples	of	dimensions	and	measures

http://sense-demo.qlik.com


The	business	problem
The	term	Human	Resources	analysis	covers	a	wide	area	of	KPIs	that	use	data
from	a	number	of	different	data	sources.

It	could	be	that	you	want	to	analyze	in-house	data,	for	example,	the	efficiency	of
the	recruitment	process	and	the	costs	tied	to	it.	It	could	just	as	well	be	analysis	of
external	data,	for	example,	different	employee	surveys	or	sentiment	analysis	on
social	media.

Just	to	give	you	an	idea,	we	have	compiled	a	list	of	some	of	the	most	common
areas	to	investigate	when	preparing	a	Human	Resources	analysis:

Recruitment:	This	measures	the	efficiency	of	the	recruitment	process,	for
example,	what	is	the	recruitment	cost	per	employee?	What	is	the	average
lead	time	to	recruit?
Employee	satisfaction	and	retention:	This	measures	employee	loyalty,	for
example,	what	is	the	average	satisfaction	(as	measured	by	a	survey)?	What
is	the	employee	turnover?
Training:	This	covers	the	following	questions	as	examples:	What	is	the
total	expenditure	on	training?	What	percentage	of	the	employees	have	gone
through	the	training?	What	is	the	number	of	training	hours	per	employee?
Health	and	safety:	This	covers	the	following	questions	as	examples:	What
is	the	number	of	accidents	per	year?	How	many	employees	are	of	adequate
health	and	get	safety	training?	How	much	does	health	and	safety	prevention
cost?
Career	and	compensation:	These	cover	the	following	questions	as
examples:	What	is	the	average	salary	rate?	How	does	it	compare	to	the
national	average?	How	much	is	the	salary	cost	compared	to	the	sales
turnover?	What	is	the	cost	of	social	and	medical	insurances?

All	of	the	preceding	KPIs	can	be	split	by	a	dimension,	month,	department,
position,	tenure,	age,	and	so	on.

It	might	be	that	you	don't	have	data	for	all	the	preceding	KPIs,	but	we	can	assure
you	that	if	you	do,	you	will	find	it	worthwhile	to	analyze	them.



Application	features
On	our	demo	site,	we	have	a	human	resource	app.	You	can	find	it	on
http://sense-demo.qlik.com,	by	clicking	on	the	Human	Capital	Management
link.	In	it,	you	will	find	a	subset	of	what	you	can	analyze	in	HR	data.	Mainly,	it
analyzes	training	investments	and	employee	satisfaction.

When	you	open	the	app,	you	will	first	see	the	app	overview,	with	a	small
description	of	the	app	and	a	thumbnail	in	the	form	of	a	small	bar	chart,	as	shown
in	the	following	screenshot:

The	overview	of	the	Human	Capital	Management	application

	

The	following	is	this	overview;	you	will	see	a	number	of	sheets.	These	are
created	according	to	the	dashboard	analysis	report	principles	described	in
Chapter	5,	Authoring	Engaging	Applications.	This	means	the	leftmost	sheet	is	an
overview,	very	much	like	a	dashboard,	whereas	the	other	sheets	are	prepared	for
analysis	and	detailed	information.

If	you	click	on	the	Stories	button,	you	will	see	that	the	app	also	contains	a	story
—a	story	that	can	be	used	to	present	the	data	in	the	app.	It	can	also	be	used	as	an
introduction	to	the	app	the	first	time	you	open	it.

http://sense-demo.qlik.com


The	sheets	on	the	app	overview	page

	



Sheets
The	first	sheet	is	called	Dashboard,	and	if	you	open	this,	you	will	see	several
key	numbers,	a	couple	of	charts,	and	a	map.	This	overview	is	designed	so	that
you	can	quickly	get	an	overview	and	a	brief	understanding	of	the	information
without	having	to	make	any	selections.

The	first	sheet	–	the	Dashboard

	

The	top-left	chart	and	the	map	show	the	number	of	employees	per	role	and	per
country.	The	two	charts	at	the	bottom	show	the	number	of	hires,	number	of
terminations,	and	total	compensation	over	time.	Note	that	this	sheet	does	not
contain	any	filter	panes	because	it	should	not	encourage	making	selections.

The	other	sheets	contain	more	detailed	information,	ordered	by	topics,	such	as
Demographics,	Ethnic	Diversity,	and	so	on.	The	final	sheet	contains	a	table
only,	showing	the	details	about	what	the	application	captures,	should	the	user	be
interested	in	drilling	down	to	the	lowest	level.



Training	costs
This	application	contains	information	that	covers	only	some	of	the	KPIs
mentioned	in	the	previous	section.	One	area	that	it	covers	well	is	training.
Hence,	our	first	question	could	be	what	the	total	expenditure	on	training	is.	The
answer	to	this	can	easily	be	found	from	the	Employee	Development	sheet.

The	Employee	Development	sheet

	

In	the	top	part	of	the	sheet,	you	can	find	a	textbox	containing	Total:	under
Training	costs.

The	next	question	is	what	the	percentage	of	employees	who	have	gone	through
the	training	is.	The	answer	to	this	can	be	found	from	the	same	sheet.	All	charts
on	this	sheet	show	the	training	completion	ratio,	split	per	department	or	program.
By	clicking	on	a	chart,	you	can	drill	down	to	the	data	and	explore	how	the
numbers	vary	between	departments,	programs,	job,	course	type,	and	course
name.

When	you	analyze	data	in	a	Qlik	Sense	application,	you	will	realize	that	there
are	many	ways	of	using	it.	For	example,	say	that	you	want	to	look	at	the	training
progress	by	gender,	to	see	whether	there	is	any	difference	between	men	and
women.	You	have	already	found	the	charts	showing	training	progress	on	the



Employee	Development	sheet,	but	these	only	show	the	progress	by	department
and	by	program.

Chart	showing	training	progress	by	department

	



Using	the	global	selector
If	you	have	been	authorized	to	create	your	own	visualizations,	you	can	simply	go
to	edit	mode,	duplicate	the	sheet,	and	then	drag	Gender	onto	the	chart,	thus
replacing	the	existing	dimension	with	Gender.

But	even	if	you	aren't	allowed	to	change	anything,	you	can	still	do	your	analysis.
You	just	have	to	do	it	in	a	different	way.	What	you	could	do	is	use	the	global
selector	(the	rightmost	button	in	the	SELECTIONS	bar)	to	select	Female	first,
and	then	Male,	as	shown	in	the	following	screenshot:

Selecting	Gender	in	the	global	selector

	

When	you	now	close	the	global	selector	and	return	to	your	Employee
Development	sheet,	you	can	toggle	between	Male	and	Female	using	the	Step
back	and	Step	forward	buttons	to	the	left	in	the	SELECTIONS	bar,	as	shown	in
the	following	screenshot.	There's	also	a	Clear	all	selections	button	in	this	bar:



The	left	part	of	the	Selections	bar	has	the	Step	back,	Step	forward,	and	Clear	all
selections	buttons.	Further	right,	the	current	selections	are	listed

	

This	way,	you	can	see	how	the	chart	changes	as	you	toggle	between	the	data	of
male	and	female	employees.

The	next	question	could	be	about	employee	compensation.	For	this,	you	need	to
go	to	the	Employee	Performance	sheet.	Here,	you	will	find	a	table	showing	all
employees	and	the	compensation	attached	to	them.	By	clicking	on	Avg
Compensation	in	the	table,	you	can	sort	the	employees	in	ascending	or
descending	order,	and	can	thus	get	a	good	overview	of	the	span.

Avg	Compensation	is	the	rightmost	column	in	the	table,	and	due	to	the
responsive	design	of	Qlik	Sense,	it	may	be	that	this	column	is	hidden.	If	so,	just
click	the	three	dots	on	the	edge	of	the	table,	and	you	can	change	the	order	of	the
columns	so	that	this	column	becomes	visible.



	

As	users,	we	would	probably	also	want	to	see	a	chart	showing	the	average	and
total	salary	costs,	split	by	department,	but	unfortunately,	this	has	not	been
created	by	the	app	developer.	However,	in	a	real-life	situation,	a	user	should	be
empowered	to	create	such	charts.	After	all,	it	is	impossible	for	an	application
developer	to	foresee	all	the	needs	of	a	user.	Hence,	this	is	a	good	example	of	the
need	for	self-service	data	discovery.



How	the	application	was	developed
The	data	model	for	the	Human	Capital	Management	application	looks	similar
to	what	is	shown	in	the	following	diagram:

	

There	are	six	tables	in	this	application:

Employees:	This	is	the	main	table,	which	has	one	record	per	employee	and
month.	It	contains	all	the	relevant	information	about	the	employee	such	as
country,	position,	salary,	and	so	on.	It	would	probably	be	a	cleaner	data
model	if	this	table	were	split	into	one	table	containing	employee
information	that	doesn't	change	over	time	and	another	table	with	the	time-
dependent	information.

However,	since	the	QIX	engine	analyzes	the	data	just	as	efficiently	either
way,	we	don't	see	any	great	benefit	in	spending	time	structuring	the	data
more.



Preview	of	the	Employees	table

	
Hierarchy:	This	table	contains	information	about	the	hierarchy	of	the
employee,	such	as	who	the	manager	of	the	employee	is,	and	who	the	VP	of
the	employee	is.
Survey:	This	table	contains	the	results	from	an	external	survey	made	on
employee	satisfaction.	Such	surveys	are	usually	made	once	in	a	year,	so	if
the	results	from	several	surveys	are	kept	in	this	table,	the	key	needs	to	hold
information	not	only	about	the	employee	but	also	about	the	year	in	which
the	survey	was	made.
Training:	This	table	contains	information	about	the	training	sessions
attended.	Hence,	if	an	employee	has	attended	two	courses,	two	records	are
stored.	The	table	also	contains	costs	associated	with	the	training	sessions.
Courses:	The	possible	courses	are	stored	in	this	separate	table.
Map	shapes:	This	table	lists	all	countries.	It	has	one	record	per	country	and
could,	in	principle,	hold	demographic	information	about	the	country.
However,	in	this	case,	it	only	holds	the	map	information—the	shapes	of	the
countries—used	in	the	map	object,	which	is	in	the	user	interface.

Note	that	this	application	has	fields	used	for	measures	in	several	tables:	salary
can	be	found	in	the	Employees	table,	cost	for	training	can	be	found	in	the
Training	table,	and	ratings	from	the	survey	can	be	found	in	the	Survey	table.
This	is	in	sharp	contrast	to	classic	BI	tools,	where	all	such	facts	need	to	be	in	one
single	table,	the	Facts	table.



Dimensions
There	are	many	fields	that	can	be	used	as	dimensions,	and	a	large	number	of
them	have	been	added	as	dimensions	to	Library	such	as	Employee	Name,	Age
Group,	Department,	and	so	on.

In	principle,	any	field	that	a	user	would	want	to	use	as	a	grouping	symbol	should
be	added	as	a	dimension.	However,	you	should	not	add	keys	with	cryptic	names
or	numbers	that	should	be	used	as	measures.

The	dimensions	in	Library

	

A	number	of	measures	have	also	been	defined,	for	example,	#	of	Employees,	#
of	Women,	Attrition,	#	of	New	Hires,	Avg	Compensation,	and	so	on.

It	is	important	that	the	app	developer	writes	the	formula	correctly,	since	this	is
something	that	could	be	difficult	for	a	business	user.	A	business	user	doesn't



always	have	knowledge	about	the	data	model,	which	is	something	you	need	in
order	to	get	all	the	expressions	right.

In	the	following	table,	you	can	find	some	of	the	measures	defined	in	this	app:

Measure Definition

#	of	Employees Count(DISTINCT	[EmployeeCount])

#	of	Women Count	({<[Gender]	=	{'Female'}>}	DISTINCT	EmployeeCount)

Attrition Count	({<[Terminated	Employee]	=	{'1'}>}	DISTINCT	[EmployeeCount])

Avg	Compensation Avg([Salary])

Completed	Training
ratio

Sum([#	Program	Completion])	/	Count(DISTINCT	EmployeeCount)

Employee
Satisfaction	Ratio

Avg(Score)

New	Hires	ratio (Count	({<	[New	Hires]	=	{'1'}	>}	DISTINCT	EmployeeCount)	/

Count(DISTINCT	EmployeeCount))

Terminations Count	({<	[Terminated	Employee]	=	{'1'}	>}	DISTINCT	EmployeeCount)

Wages	Amount Sum(Salary)

Finally,	there	are	also	a	number	of	visualizations	added	to	Library.	These	are
important,	as	they	help	a	business	user	in	the	initial	use	of	the	app.

The	most	common	bar	charts	and	tree	maps	have	been	stored	here:	Number	of
employees	by	role,	Number	of	employees	by	management	position,	and	so
on.



The	list	of	visualizations	in	Library

	



Summary
In	summary,	the	analysis	of	human	resource	data	is	easy	when	you	use	Qlik
Sense's	unique	capabilities.	Such	an	analysis	can	otherwise	be	difficult	due	to
multiple	and	disparate	data	sources	holding	human	resource	data.	Qlik's
associative	indexing	engine	powers	this	exploration	and	analysis	is	made	easy
for	the	user.

In	the	next	chapter,	we	will	look	at	how	Qlik	Sense	can	be	used	to	analyze	costs,
or	more	specifically,	travel	expenses.



Chapter	12.	Travel	Expense
Discovery
The	goal	of	this	chapter	is	to	continue	our	exploration	of	Qlik	Sense	with	real
data,	and	how	it	meets	the	needs	of	business	discovery	in	your	organization.	The
Qlik	Sense	application	chosen	for	this	chapter	is	a	topic	near	and	dear	to	most
finance	departments,	Travel	Expense	Management.	Like	all	the	applications
covered	in	this	book,	feel	free	to	explore	this	application	live	at	http://sense-
demo.qlik.com.	With	that	said,	let's	turn	our	attention	to	the	following	challenge
of	travel	expense	management	and	how	Qlik	Sense	addresses	this	common
business	challenge.

In	this	chapter,	we	will	cover	the	following	topics:

Common	travel	expense	analysis	challenges
The	unique	way	Qlik	Sense	addresses	these	challenges
How	the	application	was	built

http://sense-demo.qlik.com


The	business	problem
Expenses	are	a	major	line	item	of	every	global	company.	Traveling	cost	is	a	part
of	every	sales	and	service	cycle.	Unfortunately,	most	expense	tools	capture	the
transaction	but	do	little	to	help	gain	insights	about	how	the	expenses	were	spent,
when,	and	most	importantly	how,	to	reduce	these	expenses	when	possible.	Some
key	questions	include:

How	are	expenses	tracked	versus	the	budget?
What	is	the	actual	amount	spent	to	date?
What	is	our	largest	expense	type?
How	can	we	reduce	expenses?



Application	features
Now,	let's	take	a	look	at	the	unique	way	Qlik	Sense	approaches	solving	the
business	problems	mentioned	in	the	previous	section.	Qlik	Sense's	associative
model	allows	users	to	answer	common	questions	through	filters,	but	they	can
also	address	the	more	important	follow	up	questions	that	arise.	As	you	may
recall,	this	type	of	analysis	uses	"The	Power	of	Gray",	named	after	the	color	Qlik
Sense	assigns	to	nonassociated	elements	(potential	opportunities	for
improvement)	highlighted	in	Chapter	3,	Empowering	Next	Generation	Data
Discovery	Consumers.

The	key	questions	include:

How	are	expenses	tracked	versus	the	budget?
What	is	actual	amount	spent	to	date?
Is	my	department	over	budgeted?
What	is	our	largest	expense	variance?
What	is	the	meal	expense	breakdown?
How	can	we	reduce	expenses?

Before	we	begin,	let's	review	the	main	sheets	within	the	Travel	Expense
Management	application.	As	noted	in	the	following	screenshot,	the	application	is
made	up	of	three	sheets:	Dashboard,	Airfare,	and	Food	Expenses:



The	Travel	Expense	Management	overview

	

These	sheets	provide	insights	into	the	overall	expense	management,	and	the	two
largest	expense	categories	of	airfare	and	food.	With	that	said,	let's	now	turn	our
attention	to	our	first	question.



Tracking	expenses
A	key	question	is	how	to	manage	departmental	expenses	on	a	quarterly	basis.
How	are	expenses	tracked	versus	what	has	been	budgeted?

In	the	following	screenshot,	we	can	see	in	the	sample	application	that	Total
Expenses	is	below	budget	by	$30,964.	This	is	good	news.	Additionally,	we	see
that	the	largest	expense	is	Airfare,	and	what	is	more	troubling	is	that	Food
Expenses	is	running	$6,679	over	budget.

Expenses	tracked	versus	budget

	
Analyzing	expenses	overspent

Taking	a	closer	look	at	food	expenses	such	as	breakfast,	lunch,	and	dinner,	we
can	see	that	for	most	of	2013	(11	out	of	12	months),	employees	spent	more	for
meals	than	was	budgeted.	Exploring	a	little	deeper,	we	can	see	that	as	you'd
expect,	Dinner	takes	up	the	majority	of	the	expenses	with	$30,735.	What's	more
interesting	is	that	the	budget	to	actual	variance	starts	to	sharply	grow	in	May,



October,	and	November.

The	meal	expense	breakdown

	

Now	that	we	have	highlighted	a	problem	with	food	expenses,	let's	start	to	use	the
more	detailed	information	that	is	available	in	the	Food	Expenses	sheet,	shown
in	the	next	screenshot.	Additional	external	information	is	always	helpful	in
variance	analysis.	In	the	following	screenshot,	we	can	see	not	only	Average
Employee	Daily	Meal	Expenses	vs	Average	US	Per	Diem	Meal	Rates
(external	source),	but	also	Average	Employee	Daily	Meal	Expenses	vs
Average	US	Per	Diem	Meal	Rates	(external	source)	by	Employee	on	a
monthly	basis:



Average	Employee	expense	versus	Average	US	Meals	expenses

	



Digging	deeper	into	the	data
Overall,	the	company	seems	to	be	performing	well	against	the	US	average,	but
let's	dig	a	bit	deeper.	For	example,	are	there	employees	that	do	not	spend	on
meals,	which	could	be	lowering	the	company	average?	To	find	this	out,	simply
select	the	global	filter	(also	known	as	the	Selections	tool)	icon,	as	shown	in	the
following	screenshot:

Global	filter

	

Using	"The	Power	of	Gray"	(nonassociated	elements),	we	can	see	in	the
Employee	dimension	that	four	employees	do	not	spend	on	their	meals,	as	shown
in	the	following	screenshot:



Employees	who	are	not	spending	on	food

	

Knowing	this,	we	can	exit	the	global	filter	screen	and	continue	our	employee
meal	analysis.	What	started	off	as	a	travel	expense	analysis	has,	through	Qlik
Sense,	narrowed	down	the	analysis	to	an	employee	meal	analysis.	As	we	scroll
through	the	employees,	as	shown	in	the	following	screenshot,	we	immediately
get	to	an	employee	(Ileen	Menard)	who	has	exceeded	the	average	US	per	diem
allowance	significantly,	and	by	selecting	Ileen	Menard,	you	can	see	that	May
was	the	month	with	the	significant	variance.	Additionally,	the	green/white/gray
is	shown	in	summary	on	the	selection	bar	after	the	dimensions/members	are
selected	in	the	global	filter	below:



Employees	that	exceed	the	average	for	US	Meals	per	diem?

	
Creating	an	analysis	story	for	travel	expenses

Now	that	we've	completed	our	analysis,	let's	create	a	Travel	Expense	Analysis
story	so	that	we	can	share	our	findings	through	our	organization.

In	Chapter	4,	Contributing	to	Data	Discovery,	we	reviewed	the	role	of	a
contributor,	and	how	to	create	a	Qlik	Sense	story	and	publish	it	so	that	others
may	view	their	analysis.	Based	on	the	analysis	discussed	in	the	previous	section,
the	travel	expense	story	is	made	up	of	three	sheets.

Creating	an	overview

In	the	Overall	Expenses	sheet	shown	in	the	following	screenshot,	you	can	see
the	In	2013,	the	company	overall	stayed	below	budget	by	almost	$31,000.
While	Travel	expenses	were	well	below	budget,	food	expenses	were	$6,679
above	budget	(17%)	annotation	as	well	as	the	key	snapshot	gauges	of	the	actual



to	budget	performance	total,	Travel	Expenses,	and	Food	Expenses:

	
Sharing	our	analysis

Now	that	the	overview	of	the	analysis	is	complete,	let's	move	onto	the	next	step
and	share	what	was	found	in	analyzing	Food	Expenses.	The	Food	Expenses
story	sheet,	shown	in	the	following	screenshot,	highlights	that	for	most	of	2013
(11	out	of	12	months),	employees	spent	more	for	meals	than	was	budgeted:



	
Finishing	the	story

With	these	two	story	sheets	defined,	a	final	sheet	for	the	story	will	require	a	bit
more	interaction	for	the	viewer.	As	noted	in	Chapter	4,	Contributing	to	Data
Discovery,	this	is	achieved	by	embedding	the	Food	Expenses	sheet	directly	into
the	story,	as	shown	in	the	following	screenshot.	This	will	allow	the	author	to	not
only	narrate	the	findings	but	also	invite	the	viewer	to	explore	these	findings	and
others	within	the	application:



	

With	the	story	created,	the	final	annotation	makes	the	following
recommendation:	As	a	company,	we	should	consider	increasing	the	budget
for	meal	expenses.	Most	of	our	employees	expensed	less	that	the	per	diem
rate	in	2013	and	were	significantly	above	budget	in	their	meal	expenses	so
increasing	the	budget	seems	like	a	good	idea.

Now	that	we	have	covered	the	application	features,	let's	turn	our	attention	to	how
it	was	built.



Developing	the	application
Let's	start	our	review	of	the	heart	of	a	Qlik	Sense	application,	the	data	model.	As
you	can	see	from	the	following	screenshot,	there	are	six	tables	in	the	Travel
Expense	Management	associative	model.	At	the	heart	of	this	application	is	the
Expenses	table.	These	tables	were	created	through	Data	Load	Editor,	which
was	covered	in	Chapter	5,	Authoring	Engaging	Applications.	It	is	worth	noting
that	Qlik	and	Qlik	partners	provide	both	general-purpose	connectors	and
specialized	connectors	to	access	a	broad	array	of	data	sources.



Examining	the	key	tables
Let's	examine	the	key	tables.

Expenses

The	Expenses	table	contains	all	the	key	information	(shown	in	the	following
screenshot)	about	the	expense	transaction	of	an	employee.	This	includes
information	such	as	the	date,	employee	name,	expense	type,	and	so	on.

The	Expenses	table

	
PerDiemRates

The	PerDiemsRates	table	contains	all	the	key	information	(shown	in	the
following	screenshot)	about	state,	city,	month,	rates,	and	so	on:	

The	PerDiemRates	table

	
Airfare



The	Airfare	table	contains	all	the	key	information	(shown	in	the	following
screenshot)	about	the	origin,	destination,	airfare	value,	and	so	on:	

The	Airfare	table

	
Department

The	Department	table	contains	all	the	key	information	(shown	in	the	following
screenshot)	about	the	department	ID,	type,	and	department	name:	

The	Department	table

	
Budget

The	Budget	table	contains	all	the	key	information	(shown	in	the	following
screenshot)	about	the	budgeted	amount	using	a	compound	key	value	that
includes	the	expense	type,	department	ID,	and	date:	



The	Budget	table

	
LinkTable

LinkTable	contains	all	the	keys	(shown	in	the	following	screenshot)	to	link	the
expense,	department,	and	budget	tables:	

LinkTable

	



Dimensions
Now,	let's	turn	our	attention	to	what	has	been	exposed	in	Travel	Expense	Library
by	the	developer	to	facilitate	the	creation	and	sharing	of	personal	sheets.	In	the
following	screenshot,	we	can	see	the	dimensions	that	were	created.	One
particular	dimension	that	is	worth	calling	out	is	the	Expense	dimension,	which
provides	a	drill	navigation	from	ExpenseCategory	to	ExpenseType.	This
capability	usually	requires	extensive	modeling	or	complex	scripts	in	other	BI
software	products,	but	with	Qlik	Sense,	this	is	a	simple	selection	process	when
creating	the	dimension.	This	is	another	example	of	the	power	of	Qlik's
associative	indexing	engine	in	action,	but	this	time,	easing	the	development	of
navigation	within	the	application.



Dimensions

	
Measures



The	next	area	to	cover	is	Measures.	These	are	calculated	expressions	that	most
often	form	the	KPIs	within	an	application.	In	the	following	screenshot,	we	can
see	a	list	of	measures	that	are	used	and	exposed	to	contributors	to	allow	them	to
create	private	sheets.	Note	that	hovering	the	pointer	over	any	of	these	objects
makes	a	preview	popup	appear	to	provide	additional	context.	In	this	case,	you
can	see	how	the	measure	Actual	-	Food	is	calculated.



Measures

	

Additionally,	the	following	table	contains	the	measure	definitions	that	directly	tie



to	the	KPIs	used	in	this	application.	Refer	to	the	Qlik	Sense	online	help	for
additional	information	on	the	Qlik	Sense	function,	which	is	available	at
https://help.qlik.com.

The	measure	expressions	include:

Measure Calculation

%	of	Budget	-
Travel

num(sum({<[Expense	Category]	=	{'Travel'}>}	Amount)

/	sum({<[Expense	Category]	=	{'Travel'}>}	Budget),	'#,##0%')

%	of	Budget	2 num((Sum(Budget)/sum(Amount))-1,	'#,##0%')Amount])

Actual Num(Sum(Amount),'$#,##0')

Actual	-	Food num(sum({<[Expense	Category]	=	{'Food'}>}	Amount),	'$#,##0')

Actual	-	Travel num(sum({<[Expense	Category]	=	{'Travel'}>}	Amount),	'$#,##0')

Actual/Budget
Difference

Num(Sum(Budget)-Sum(Amount),'$#,##0')

Airfare	Not	Booked
in	Advance

Num(Avg({<[Expense	Type]={'Airfare'},	Booked14DaysInAdvance={'No'}>}

Amount),'$#,##0.00')

Average	Employee
Airfare

Avg({<[Expense	Type]={'Airfare'}>}	Amount)

Average	Employee
Daily	Hotel	Cost

Sum({<[Expense	Type]={'Hotel'}>}	Amount)/Count(DISTINCT	Employee)

Average	Employee
Daily	Meal	Cost

Sum({<[Expense	Type]={'Breakfast',	'Lunch',	'Dinner'}>}

Amount)/Count(DISTINCT	Employee)

Average	US	Airfare
(External	Source)

Avg({<Trade={'Average	Fare'}>}	AirfareValue)

Average	US Avg({<Rate={'Lodging'}>}	PerDiemValue)

https://help.qlik.com


Lodging	Rates
(External	Source)

Average	US	Meal
Rates	(External
Source)

Avg({<Rate={'M&IE'}>}	PerDiemValue)

Avg	Airfare	-
Largest	Carrier
(External	Source)

Avg({<Trade={'Average	Fare	-	Largest	Carrier'}>}	AirfareValue)

Avg	Airfare	-	Low
Fare	Carrier
(External	Source)

Avg({<Trade={'Average	Fare	-	Low	Fare	Carrier'}>}	AirfareValue)

Booked	Airfare	in
Advance

Num(Avg({<[Expense	Type]={'Airfare'},	Booked14DaysInAdvance={'Yes'}>}

Amount),'$#,##0.00')

Booked	Difference Num(Avg({<[Expense	Type]={'Airfare'},	Booked14DaysInAdvance={'Yes'}>}

Amount)-Avg({<[Expense	Type]={'Airfare'},	Booked14DaysInAdvance=

{'No'}>}	Amount),'$#,##0.00')

Booked	Difference
%

Num((Avg({<[Expense	Type]={'Airfare'},	Booked14DaysInAdvance=

{'Yes'}>}	Amount)/Avg({<[Expense	Type]={'Airfare'},

Booked14DaysInAdvance={'No'}>}	Amount))-1,'#,##0.00%')

Budget Num(Sum(Budget),'$#,##0')

Budget	-	Food num(sum({<[Expense	Category]	=	{'Food'}>}	Budget),	'$#,##0')

Budget	-	Travel num(sum({<[Expense	Category]	=	{'Travel'}>}	Budget),	'$#,##0')

Food	Difference num(sum({<[Expense	Category]	=	{'Food'}>}	Budget)-sum({<[Expense

Category]	=	{'Food'}>}	Amount),	'$#,##0')

Travel	Difference num(sum({<[Expense	Category]	=	{'Travel'}>}	Budget)-sum({<[Expense

Category]	=	{'Travel'}>}	Amount),	'$#,##0')

Visualizations

The	last	category	of	objects	in	the	Library	(Master	items)	is	Visualizations.
These	are	preformed	visualizations	that	are	typically	the	most	popular	or



requested.	They	are	defined	to	help	facilitate	a	user's	analysis	and	can	be	easily
dragged	and	dropped	onto	a	private	sheet.	In	the	following	screenshot,	we	see	a
horizontal	bar	chart	that	analyzes	the	variance	in	Booked	Airfare	in	Advance	vs
Not	in	Advance.	Each	of	these	visualizations	contains	predefined	dimensions,
measures,	and	chart	definitions.

The	Travel	Expense	visualizations



	



Summary
In	summary,	Qlik	Sense	provides	unique	capabilities	to	meet	the	challenging
task	of	analyzing	and	managing	travel	expenses.	Without	the	capabilities	offered
by	Qlik,	this	task	can	be	difficult	due	to	the	size	of	the	data	and	the	many
perspectives	that	can	be	taken	in	trying	to	understand	airline	purchasing,	meal
expense	habits,	and	the	impact	on	meeting	corporate	budget	requirements.	Qlik's
associative	indexing	engine	powers	this	exploration	and	means	that	meeting
these	requirements	is	no	longer	challenging	at	all.

In	the	next	chapter,	we	will	explore	how	Qlik	Sense	meets	the	needs	of
demographic	data	discovery.



Chapter	13.	Demographic	Data
Discovery
In	this	final	chapter,	we	shall	finish	our	exploration	of	real	data	with	Qlik	Sense
by	moving	beyond	the	standard	structures	of	the	office	and	showing	the	full
possibilities	of	the	software	for	analysis	of	almost	any	kind	of	imaginable	data.
We'll	therefore	be	looking	at	applying	Qlik	Sense	to	demographic	data.	As
before,	this	example	and	many	others	are	available	for	you	to	explore	at
http://sense-demo.qlik.com.

This	chapter	will	cover	the	aspects	necessary	for	demographic	data	discovery,
including:

General	information	about	common	KPIs
Examples	showing	how	to	use	the	lasso	selection	in	maps	and	scatter	charts
Examples	of	dimensions	and	measures

http://sense-demo.qlik.com


Problem	analysis
With	Qlik	Sense,	it	is	possible	to	analyze	not	only	business	data,	but	rather	any
data.	One	great	example	is	demographic	data—statistics	of	countries	and	regions
on	anything	from	age	and	gender	to	income	and	life	expectancy.

Such	data	can	be	found	on	a	number	of	Internet	sites	and	downloaded	for	your
convenience,	for	example,	from	the	following	websites:

United	Nations	(data.un.org)
Federal	government	of	the	United	States	(www.data.gov)
European	Union	(ec.europa.eu/eurostat)
Qlik	DataMarket	(www.qlik.com/us/explore/products/qlik-datamarket)

Demographic	data	is	used	and	analyzed	as-is	by	a	number	of	nongovernmental
organizations	that	need	it	for	their	activities.	The	common	measures	required	are
GDP	per	capita,	population,	unemployment	rate,	inflation,	life	expectancy,
happiness,	trade	balance,	labor	cost,	national	debt,	election	results,	and	so	on.

Often,	interesting	questions	about	correlations	are	asked;	for	example,	how	does
happiness	correlate	with	material	standards	and	health?	How	are	population
growth	and	the	number	of	children	affected	by	factors	such	as	life	expectancy,
poverty,	and	average	salary?	How	has	life	expectancy	improved	over	the	years?
If	you	haven't	seen	Hans	Rosling's	presentations	on	the	Internet	on	this	topic,	we
strongly	recommend	them.	They	show	that	data	analysis	is	both	important	and
fun.

Common	dimensions	in	demographic	data	are	country,	region,	gender,	age
group,	ethnicity,	and	so	on.	An	example	can	be	seen	in	the	following	scatter
chart,	where	you	can	see	life	expectancy	and	per	capita	GDP	for	different
countries.	Many	developing	countries	are	found	in	the	lower-left	quadrant,
whereas	the	richer	countries	usually	are	found	in	the	upper-right	quadrant.

http://data.un.org
http://www.data.gov
http://ec.europa.eu/eurostat
http://www.qlik.com/us/explore/products/qlik-datamarket


Life	expectancy	versus	per	capita	GDP

	

You	can	clearly	see	that	the	two	numbers	are	highly	correlated—the	higher	the
GDP,	the	higher	the	life	expectancy.

These	measures	can	often	also	be	linked	to	your	business	data	to	enable	a	deeper
understanding.	For	instance,	you	can	divide	your	country	sales	by	the	population
of	the	country,	thereby	getting	a	relative	sales	number,	which	tells	you	how	well
you	sell	in	that	country.	With	this	number,	you	can	make	relevant	comparisons	of
countries	of	different	sizes.

Alternatively,	if	you	assume	that	the	market	space	in	the	country	is	roughly
proportional	to	the	GDP,	you	can	divide	your	sales	by	the	GDP	and	use	this
number	to	compare	market	penetration	between	countries.

These	numbers	will	answer	questions	such	as,	"How	well	are	we	selling	in	this
country,	given	the	potential?"



Application	features
On	our	demo	site,	we	have	an	app	with	a	number	of	demographic	measures	per
country.	You	can	find	it	at	http://sense-demo.qlik.com	under	the	name
Happiness.	It	analyzes,	among	other	demographic	indexes,	the	Happy	Planet
Index	(HPI)	in	a	number	of	countries.	You	can	learn	more	about	this	index	at
www.happyplanetindex.org.

This	index	measures	the	sustainable	well-being	of	151	countries	across	the
globe,	focusing	not	on	their	abilities	to	produce	material	goods	and	services,	but
rather	on	their	abilities	to	produce	long,	happy,	and	sustainable	lives	for	the
people	who	live	in	them.	A	happy	life	doesn't	have	to	come	at	the	expense	of	our
environment,	and	the	HPI	is	used	to	promote	a	policy	that	puts	the	well-being	of
people	and	the	planet	first.

The	app	overview	of	the	Happiness	application

	

Below	this	overview,	you	will	see	a	number	of	sheets.	The	leftmost	sheet	is	an
introduction,	whereas	the	other	sheets	are	prepared	for	analysis	and	detailed
information.

If	you	click	on	the	Stories	button	to	the	left,	you	will	see	that	the	app	also
contains	one	story—a	story	that	can	be	used	to	present	data	in	the	app.	It	can
also	be	used	as	an	introduction	to	the	app	the	first	time	you	open	it.

http://sense-demo.qlik.com
http://www.happyplanetindex.org


The	sheets	on	the	app	overview	page

	

The	first	sheet	is	an	introduction	sheet	that	explains	what	the	app	is	all	about.
The	second	sheet,	which	is	the	first	one	with	traditional	charts,	is	called	Happy
Planet	Index	(HPI).	On	it,	you	will	see	the	happiness	index	for	all	countries,
first	on	a	map,	and	then	in	a	table.

The	countries	in	the	map	are	colored	according	to	the	happiness	index—the
darker	the	color,	the	higher	the	happiness	index.



A	map	showing	the	happiness	index	per	country

	

Below	the	map,	there	are	three	scatter	charts	showing	the	happiness	index	per
country,	plotted	against	the	life	expectancy,	GDP	per	capita,	and	total	population.
These	three	charts	are	excellent	tools	to	analyze	any	correlation	between
happiness	and	the	mentioned	demographic	measures.

Scatter	charts	that	show	the	correlation	(or	lack	of	correlation)	between
happiness	and	other	demographic	measures

	



Finally,	at	the	bottom,	you	have	three	filter	panes,	allowing	the	user	to	choose
only	a	region,	subregion,	or	country	to	zoom	in	the	numbers	for	a	specific	area.

The	other	sheets	contain	additional	and	more	detailed	information,	ordered	by
topics.	The	final	sheet	contains	a	table	showing	the	details,	should	the	user	be
interested	in	drilling	down	to	the	lowest	level.



Analysis
When	looking	at	data	in	this	app,	the	first	question	that	pops	up	in	the	user's
mind	is	usually,	"Is	there	any	correlation	between	happiness	and	x?"	To	get	a
qualitative	answer	to	this,	you	only	need	to	browse	through	the	scatter	charts.

On	the	Happy	Planet	Index	(HPI)	sheet,	you	have	three	scatter	charts.	In	the
leftmost	chart,	HPI	vs	Life	Expectancy,	you	can	see	a	correlation	between	the
two	measures,	at	least	for	lower	life	expectancies.	In	the	other	two	charts,
however,	there	is	no	clear	correlation.

On	the	HPI	Comparison	sheet,	you	have	three	additional	scatter	charts.	In	the
leftmost	chart,	HPI	vs	Happy	Life	Years,	you	can	see	a	weak	correlation
between	the	two	measures.	The	same	is	true	for	the	rightmost	chart,	HPI	vs
Global	Footprint,	but	in	the	chart	in	the	middle	(HPI	vs	Governance),	there	is
no	clear	correlation.

However,	as	in	all	statistics,	you	have	to	be	careful	with	your	conclusions.
Firstly,	correlation	does	not	imply	causation.	You	have	to	look	at	many	factors
and	use	common	sense	to	find	the	true	cause	and	effect.	In	this	case,	it	is	just	that
the	happiness	index	is	an	artificial	index	calculated	from	the	life	expectancy	and
ecological	footprint	among	others,	hence	the	correlation	with	happy	life	years
and	global	footprint.



Using	the	lasso	selector	to	make	selections
Now,	let's	explore	the	data.	One	question	could	be,	"Where	in	the	world	do	we
find	the	countries	with	a	low	average	life	expectancy?"	To	answer	this,	you	need
to	make	a	selection	in	the	scatter	chart	showing	life	expectancy:

1.	 First,	navigate	to	the	Happy	Planet	Index	sheet.	Maximize	the	scatter	chart
that	shows	HPI	vs	Life	Expectancy	by	clicking	on	the	fullscreen	arrow	in
the	upper-right	corner	of	the	object.

2.	 Then,	click	on	the	chart	so	that	the	chart	controls,	including	the	lasso
symbol,	appear	in	the	upper-right	corner.

3.	 Next,	click	on	the	Turn	on	lasso	selection	option.	Now	you	can	draw	a	line
around	the	points	you	want	to	select.

4.	 Finally,	confirm	your	selection	by	clicking	on	the	green	tick	mark	in	the
upper-right	corner.

Lasso	selection	in	the	scatter	chart

	

If	you	now	look	at	the	map,	you	will	see	where	these	countries	appear	in	the
world.	It's	predominantly	Africa	and	South	Asia.	If	you	click	on	the	map,	you



can	zoom	in	using	the	scroll	wheel	of	the	mouse.	You	can	also	pan	the	map.

Countries	with	low	life	expectancy

	

Of	course,	you	can	also	make	a	selection	the	other	way	round.	Use	the	lasso
selector	in	the	map	and	see	how	the	selected	countries	are	distributed	in	the
scatter	chart.	The	way	to	do	this	is	as	follows:

1.	 Maximize	the	map.
2.	 Click	somewhere	in	the	map.
3.	 Click	on	the	Turn	on	lasso	selection	option	and	encircle	the	part	of	the

world	you	want	to	explore.
4.	 Finally,	confirm	your	selection.



Making	a	lasso	selection	of	America	on	the	map

	



Using	the	global	selector	to	make	selections
You	can	also	use	the	global	selector	to	make	selections.	Just	click	on	the	global
selector	and	make	selections	directly	in	the	fields.

For	instance,	you	may	have	a	question	like	this,	"Where	in	the	world	do	I	find
the	richest	countries?"	In	such	a	case,	perform	the	following	steps:

1.	 Open	the	global	selector.	(This	is	found	to	the	right	in	the	toolbar	with
Selections	tool	as	a	popup.)

2.	 Find	a	field	called	GDP/capita	($PPP).	To	do	this,	you	might	first	need	to
check	Show	fields	in	the	global	selector.

3.	 Once	you	have	found	this	field,	you	can	investigate	it	just	by	scrolling.	You
will	then	see	that	there	are	some	countries	with	less	than	$400	in	GDP	per
capita,	while	the	richest	countries	have	more	than	$80,000	in	GDP	per
capita.

If	you	want	to	find	the	countries	where	the	GDP	is	greater	than	$10,000,	perform
the	following	steps:

1.	 Click	on	the	search	icon	and	type	>10000.
2.	 Confirm	the	search	by	pressing	Enter,	and	then	confirm	the	selection	by

clicking	on	the	green	tick	mark.

Selecting	the	countries	in	the	world	with	the	highest	GDP

	

If	you	now	close	the	global	selector	and	go	back	to	the	map	and	the	scatter



charts,	you	will	be	able	to	see	where	you	find	the	richest	countries,	both	on	the
map	and	in	the	scatter	charts.



How	the	application	was	developed
The	data	model	of	the	Happiness	application	is	not	very	complicated:

	

This	is	an	extremely	simple	data	model	that	only	contains	one	table	of	real	data,
Happy	Planet	Index,	and	an	additional	table	listing	all	countries,
World.shp/Features.	The	second	table	has	one	record	per	country	and	holds	the
map	information—the	shapes	of	the	country—used	in	the	map	object	in	the	user
interface.

In	this	app,	the	data	table	has	exactly	one	record	per	country—a	record	that
contains	the	relevant	information	for	a	given	country	at	a	given	moment.
However,	this	is	not	always	the	situation.	More	often,	the	data	table	contains	data
for	countries	over	many	points	in	time,	for	example,	one	record	per	combination
of	a	country	and	a	year.	This	will	result	in	several	lines	per	country.



Dimensions
There	are	not	many	fields	that	can	be	used	as	dimensions.	The	three	available
fields	are	region,	subregion,	and	country.	The	world	is	split	into	7	regions	and	19
subregions.	A	country	can	only	belong	to	one	subregion	and	one	region.	These
fields	have	been	added	to	Library.	In	addition,	a	drill-down	dimension	has	been
created	from	the	three	fields.

The	dimensions	in	Library

	

One	way	of	adding	dimensions	could	be	by	creating	buckets	based	on	one	of	the
measures,	for	example,	population.	Countries	could	then	be	grouped	under
Large,	Medium,	and	Small	classes,	which	will	be	stored	in	a	new	field,
Population	Class.



Measures
A	number	of	measures	have	also	been	defined,	for	example,	GDP,	happiness
index,	global	footprint,	life	expectancy,	and	so	on.

It	is	important	that	the	app	developer	formulates	the	formulas	correctly,	since
this	is	something	that	could	be	difficult	for	the	business	user.	The	business	user
doesn't	always	have	knowledge	about	the	data	model,	which	is	something	you
need	in	order	to	get	all	the	expressions	right.

In	the	following	table,	you	can	find	some	of	the	measures	defined	in	this	app:

Measure Definition

GDP	per	Capita Avg([GDP/capita])

Global	Footprint Avg([Footprint])

Governance	Rank Only[Governance	Rank])

Happy	Life	Years Only([Happy	Life	Years])

Happy	Planet	Index Only([Happy	Planet	Index])

HPI	Rank Only([HPI	Rank])

Population Only(Population)

Several	of	these	measures	can	be	defined	differently.	How	you	do	this	is	very
much	a	matter	of	taste.	For	instance,	the	measures	where	the	Only()	function	is
used	can	also	be	defined	using	Sum()	or	Avg().	As	long	as	you	only	have	a
single	number,	all	three	functions	will	return	the	same	answer.

But	how	do	you	want	Qlik	Sense	to	behave	when	there	are	several	countries,	for
example,	a	region	that	should	be	represented	by	one	value?	For	the	Population
measure,	the	obvious	function	to	use	should	be	Sum().	Then	the	total	population
of	the	region	will	be	shown.



But	if	the	source	data	contains	several	years,	so	that	a	single	country	has	several
records,	you	don't	just	want	to	sum	the	population.	Then	you	would	get	numbers
that	are	much	larger	than	they	should	be.	Instead,	you	might	want	to	use
Sum(Population)/Count(distinct	Year)	to	create	an	average	over	all	possible
years.

In	addition,	for	a	rank,	you	wouldn't	want	to	use	Sum()	because	it	would	show	an
incorrect	number.	You	could	use	Avg(),	which	will	give	the	average	rank
between	the	countries.	An	average	is	clearly	better,	but	it	is	still	not
mathematically	correct.	Then	it	might	be	better	to	use	Only(),	which	doesn't
return	an	answer	at	all	when	more	than	one	country	is	involved.



Summary
The	analysis	of	demographic	data	is	easy	when	you	use	Qlik	Sense.	Obviously,
this	analysis	can	also	be	made	with	a	number	of	other	tools,	since	the	data	model
is	very	simple.	However,	with	Qlik	Sense,	it	is	easy	to	build	further.	Qlik's
associative	indexing	engine	powers	the	analysis	and	ensures	that	you	can
develop	or	change	your	apps	quickly	and	easily.	With	Qlik	Sense,	data	discovery
and	analysis	is	made	easy.

With	the	end	of	this	chapter,	we	have	also	reached	the	end	of	the	book.	We	took
you	from	the	history	of	Qlik	to	how	to	develop	applications,	and	finally	gave
you	some	examples	of	how	applications	might	look.

We	hope	that	after	reading	this	book,	you	have	acquired	some	skills	that	will	be
useful	when	you	develop	your	own	Qlik	Sense	applications.	We	also	think	you
now	have	a	better	understanding	of	the	thoughts	behind	Qlik	Sense,	and	wish
you	good	luck	in	your	endeavors.

Welcome	to	the	community	of	Qlik	users!



Part	2.	Module	2
Qlik	Sense	Cookbook

Over	80	step-by-step	recipes	to	tackle	the	everyday	challenges	faced	by
Qlik	Sense	developers



Chapter	1.	Getting	Started	with	the
Data
In	this	chapter,	we	will	cover	the	basic	tasks	related	with	extracting	data	into	a
Qlik	Sense	application:

Extracting	data	from	databases	and	data	files
Extracting	data	from	Web	Files
Activating	the	Legacy	Mode	in	Qlik	Sense®	desktop
Extracting	data	from	custom	databases
Invoking	help	while	in	the	data	load	editor	or	the	expression	editor
Previewing	data	in	the	Data	model	viewer
Creating	a	Master	Library	from	the	Data	model	viewer
Using	a	Master	Library	in	the	Edit	mode



Introduction
Data	is	the	core	aspect	of	any	Business	Intelligence	application.	It	provides
information	that	helps	organizations	to	make	decisions.

A	Qlik	Sense	application	is	based	on	the	data	extracted	from	various	sources,
such	as	relational	databases,	CRM	systems,	ERP	systems,	and	data	files.

This	chapter	introduces	the	user	to	various	methods	of	extracting	data	into	a	Qlik
Sense	application	effectively.	It	is	assumed	that	the	reader	is	already	acquainted
with	the	concepts	of	ODBC,	OLEDB,	and	relational	databases.	The	chapter	also
provides	an	essential	recipe	for	fetching	the	data	into	Qlik	Sense	from	a	SAP
system.	The	SAP	connector	can	be	downloaded	from	the	Qlik	website	and
installed	before	working	on	the	recipe.	You	need	to	acquire	a	valid	license
enabler	file	beforehand,	in	order	to	download	the	SAP	connector.

The	later	part	of	the	chapter	focuses	on	a	few	recipes	regarding	the	creation	of	a
library	and	content.



Extracting	data	from	databases	and
data	files
The	data	within	an	organization	is	usually	stored	in	relational	databases	and	data
files.	Extracting	data	is	the	first	step	towards	creating	a	data	model.	The
following	section	demonstrates	the	steps	to	extract	data	from	an	MS	Access
database	and	a	delimited	(.CSV)	file.	The	procedure	to	extract	data	from	other
relational	databases	is	the	same	as	the	process	for	extracting	data	from	MS
Access.

The	dataset	that	we	will	use	is	available	publicly	and	covers	information	about
routes	and	fares	of	various	transport	systems	in	Hong	Kong.	The	original	data
files	have	been	downloaded	from	(https://data.gov.hk/)	website.	This	dataset	can
also	be	obtained	from	the	Packt	Publishing	website.

The	data	connections	in	the	Qlik	Sense	data	load	editor	save	shortcuts	leading	to
commonly	used	data	sources,	such	as	databases	and	data	files.	The	following
types	of	connections	exist	in	Qlik	Sense:

ODBC	database	connection
OLEDB	database	connection
Folder	connection
Web	file	connection

This	recipe	deals	with	the	ODBC,	OLEDB,	and	Folder	connections.	The	web
file	connection	will	be	dealt	with	in	a	separate	recipe.

https://data.gov.hk/


Getting	ready…
The	dataset	required	for	this	recipe	that	is	downloaded	from	the	Packt	Publishing
website	comes	in	a	zipped	folder	called	as	QlikSenseData.	Extract	all	the	files
from	this	zipped	folder	and	save	them	on	the	hard	drive	at	a	desired	location.

If	you	are	connecting	to	the	database	using	Open	Database	Connectivity
(ODBC)	then:

1.	 Install	the	relevant	ODBC	drivers	on	your	system.

Note

For	the	sake	of	our	exercise,	we	need	the	MS	Access	drivers.	The	system
DSN	connection	can	be	set	up	through	the	ODBC	administrator	under	the
Administrative	Tools	in	Control	Panel.

2.	 While	setting	up	the	ODBC	connection,	select	the	ROUTE_BUS.mdb	file	as
the	Data	Source	from	the	QlikSenseData	folder.

3.	 Name	the	ODBC	DSN	connection	as	HongKong	Buses.
4.	 Create	a	new	Qlik	Sense	application	and	open	the	data	load	editor.
5.	 Click	on	the	Create	New	Connection	and	select	ODBC.
6.	 Select	HongKong	Buses	under	System	DSN.
7.	 Name	the	data	connection	as	Qlik	Sense	CookBook	ODBC.
8.	 The	following	image	shows	the	details	we	enter	in	the	Create	new

connection	(ODBC)	window:	



If	you	are	connecting	to	the	database	using	OLE	DB	connectivity,	we	can
directly	set	this	up	through	the	editor:

1.	 Open	the	data	load	editor	in	Qlik	Sense.
2.	 Click	on	the	Create	New	Connection	and	select	OLE	DB.
3.	 Select	the	Microsoft	Jet	4.0	OLE	DB	Provider	(32	Bit)	driver	from	the

provider	drop-down	list.
4.	 Insert	the	Data	Source	file	path,	which	in	our	case	will	be	the	path	for	the

ROUTE_BUS.mdb	file	in	the	QlikSenseData	folder.
5.	 Name	the	data	connection	as	QlikSense	CookBook	OLE	DB.
6.	 The	following	image	shows	the	details	we	enter	in	the	Create	new

connection	(OLE	DB)	window:	



If	you	are	extracting	the	data	from	a	data	file,	such	as	.CSV,	perform	the
following	steps:

1.	 Open	the	data	load	editor	in	Qlik	Sense.
2.	 Click	on	Create	New	Connection	and	select	Folder.
3.	 Select	the	location	of	the	QlikSenseData	folder	which	contains	our	data

files.	Alternatively,	one	can	directly	enter	the	path	of	the	source	folder
under	Path.

4.	 Name	the	data	connection	as	Qlik	Sense	CookBook	Data.
5.	 The	following	image	shows	the	details	we	enter	in	the	Create	new

connection	(folder)	window:	



6.	 Once	the	connections	are	created	in	the	Qlik	Sense	library,	they	will	be	seen
as	a	list	under	Data	connections	in	the	data	load	editor,	as	shown	in	the



following	screenshot:	



How	to	do	it…
If	you	are	working	with	an	ODBC	or	an	OLEDB	data	connection,	follow	the
steps:

1.	 Insert	the	relevant	data	connection	string	to	the	script	by	clicking	on	Insert
connection	string,	as	shown	in	the	following	screenshot:	

Next,	click	on	Select	data	under	Data	connections	to	view	and	extract	data
from	the	ROUTE	table	in	the	MS	Access	database,	as	shown:	



The	preview	of	the	ROUTE_BUS.mdb	table	will	look	like	the	following.	The
fields	in	the	table	can	be	excluded	or	renamed	while	working	in	the	Preview
window,	as	shown	in	the	following	screenshot:	

Click	on	Insert	Script	in	the	Preview	window.	This	will	insert	the	connection
string	as	well	as	load	the	statement	to	the	script.	Make	sure	that	you	delete	the
duplicate	LIB	CONNECT	TO	'Qlik	Sense	CookBook	ODBC';	statement	from	your
script.



Load	the	data	in	your	application	by	clicking	on	the	 	button.

Keep	the	Close	when	successfully	finished	option	checked	in	the	data	load
progress	window.	If	the	data	is	loaded	successfully,	then	the	window
automatically	closes	or	else	the	error	encountered	is	highlighted.

1.	 On	a	similar	note,	in	order	to	test	the	Qlik	Sense	data	files,	Click	on	the
Select	data	option	under	the	Qlik	Sense	CookBook	Data	connection.

2.	 Next,	select	the	ROUTE_GMB.csv	file	from	the	QlikSenseData	folder	and
load	it	in	the	application.

3.	 The	preview	of	the	ROUTE_GMB.csv	table	will	look	like	the	following
screenshot.	Make	sure	that	you	select	Embedded	field	names	under	Field
names.	Note	that	the	Delimiter	in	this	case	is	automatically	set	to	Comma.

4.	 Insert	the	script	and	then	save	and	load	it.



How	it	works…
The	LIB	CONNECT	TO	statement	connects	to	a	database	using	a	stored	data
connection	from	the	Qlik	Sense	library;	thus,	acting	as	a	bridge	between	our
application	and	the	data	source.



There's	more…
This	recipe	aimed	at	extracting	data	from	common	data	sources,	such	as
RDBMSs	and	data	files.	Qlik	Sense	can	also	extract	data	from	web	files	and
custom	data	sources	such	as	SAP.	We	will	see	this	in	the	forthcoming	section.



See	also…
Creating	a	Master	Library	from	the	Data	model	viewer



Extracting	data	from	Web	Files
Often,	the	data	required	for	the	purpose	of	reporting	is	not	stored	in	a	database,
but	instead	needs	to	be	fetched	from	a	website.	For	example,	customer	location
information	specifically	the	geographic	co-ordinates	used	in	mapping	analysis	is
not	available	internally	within	an	organization.	This	information	may	be
available	on	the	web	and	can	be	extracted	from	there.



Getting	ready…
When	extracting	the	data	from	a	web	file:

1.	 Open	an	existing	Qlik	Sense	application	or	create	a	new	one.
2.	 Open	the	data	load	editor.
3.	 Click	on	Create	New	Connection	and	select	Web	file.
4.	 The	Select	web	file	window	will	open.
5.	 Insert	the	following	URL	from	which	you	can	fetch	the	data:

http://www.csgnetwork.com/llinfotable.html

Name	the	connection	as	QlikSense	Cookbook	Webfile,	as	shown:	



How	to	do	it…
1.	 In	the	list	under	Data	Connections,	select	QlikSense	Cookbook	Webfile

and	click	on	Select	Data.	This	will	open	up	a	preview	window	listing	out
all	the	tables	from	the	web	page.	When	you	carefully	examine	the	table
contents,	you	realize	that	it	is	the	second	table	@2	that	contains	the	location
information.

2.	 Check	the	box	next	to	@2	and	ensure	that	it	is	selected,	so	the	correct	table
is	shown	in	the	preview.	The	user	will	need	to	change	the	value	under	Field
names	to	embedded	field	names.

3.	 The	preview	of	the	table	will	look	like	the	following	screenshot:	

	
Select	all	the	fields	from	the	table	in	the	preview	window.	Click	on	Insert

script	to	load	the	web	data	in	the	application.
Name	the	table	as	Country_Location	and	the	script	will	read	as	follows:

Country_Location:

LOAD

Country,

Capital,

Latitude,

Longitude

FROM	[lib://QlikSense	Cookbook	Webfile]

(html,	codepage	is	1252,	embedded	labels,	table	is	@2);



Save	and	load	the	data.	Once	the	script	is	successfully	loaded,	the	data	model
viewer	will	show	the	loaded	table.



How	it	works…
Qlik	Sense	connects	to	the	web	file	using	the	stored	data	connection.	Once
connected	it	identifies	the	tables	in	the	HTML	source	and	lists	them	in	the
preview	window.

Certain	external	websites	require	authentication	in	order	to	be	accessed	and	Qlik
Sense	is	unable	to	cope	with	websites	that	are	secured	in	this	manner.	In	order	to
get	over	this	issue,	we	can	use	a	third	party	data	extraction	tool.	The	extracted
data	can	be	stored	in	a	data	file,	such	as	a	qvd.	The	qvd	file	can	then	be	used	as	a
data	source	in	the	Qlik	Sense	application.



There's	more…
Qlik	Sense	can	also	extract	data	from	other	data	formats,	such	as	XML.	The
underlying	principles	remain	the	same	as	explained	in	the	preceding	recipes.



See	also…
Creating	a	Master	Library	from	the	Data	model	viewer
Activating	the	Legacy	Mode	in	Qlik	Sense®	desktop



Activating	the	Legacy	Mode	in	Qlik
Sense®	desktop
Qlik	Sense	is	a	developing	product;	hence,	certain	features	are	not	active	when
running	the	Desktop	version	in	its	standard	mode.	A	prime	example	of	this	is
using	the	Custom	Connect	to	statement	to	create	the	ODBC/OLEDB
connection	strings	or	attempting	to	connect	to	a	custom	database	as	SAP.	Both
these	activities	are	not	possible	if	Qlik	Sense	runs	in	its	standard	mode.	In	order
to	get	these	functionalities	to	run,	we	need	to	activate	the	legacy	mode.	However,
one	must	note	that	enabling	the	legacy	mode	has	security	implications,	if	the
application	is	deployed	on	the	Sense	server	then	one	does	not	have	control	over
the	data	connections	in	QMC	(if	the	legacy	mode	is	activated).	The	library
security	features	may	also	be	lost;	moreover,	the	legacy	mode	does	not	work
with	Qlik	Cloud	either.



Getting	ready…
Activating	the	Legacy	Mode	requires	changing	a	parameter	value	in	the
settings.ini	file	for	Qlik	Sense.



How	to	do	it…
1.	 Make	sure	that	Qlik	Sense	Desktop	is	closed	before	opening	the

settings.ini	file.
2.	 Open	the	settings.ini	file	that	is	by	default	stored	under	C:\Users\

{user}\Documents\Qlik\Sense\Settings.ini.
3.	 Change	StandardReload=1	to	StandardReload=0.
4.	 Save	the	file	and	start	Qlik	Sense	Desktop	in	order	to	run	it	in	a	legacy

mode,	as	shown:



How	it	works…
Changing	the	value	for	the	StandardReload	parameter	in	the	settings.ini	file
enables	the	Legacy	Mode	in	Qlik	Sense.	When	running	in	the	Legacy	mode,	any
of	the	scripts	in	Qlik	View	can	be	directly	used	in	Qlik	Sense.	This	will	also
allow	us	to	use	the	library	connections.



There's	more…
The	Qlik	Sense	has	the	capability	to	use	the	same	script	that	is	found	in	any
Qlikview	file.	One	can	also	use	a	binary	load	statement	in	Qlik	Sense	in	order	to
load	the	entire	data	model	from	an	existing	Qlikview	file.	All	the	Custom
Connect	To	statements	can	only	be	used	after	we	activate	the	legacy	mode.



See	also…
Extracting	data	from	custom	databases



Extracting	data	from	custom
databases
The	current	version	of	Qlik	Sense	does	not	support	the	loading	of	data	from
custom	databases,	such	as	SAP	or	Salesforce.	Nevertheless,	it	can	still	be
achieved	in	a	few	simple	steps.	The	following	recipe	explains	the	steps	to	load
data	from	a	SAP	database.



Getting	ready…
The	Custom	connector	option	under	Create	new	connection	is	not	available	in
the	Qlik	Sense	data	load	editor.	This	feature	is	going	to	be	introduced	soon	in	a
forthcoming	release	of	the	product.

The	following	recipe	requires	you	to	use	another	Qlik	product	named	Qlikview
in	order	to	generate	the	extract	script	that	is	to	be	copied	and	used	in	the	Qlik
Sense	application.	Qlikview	is	free	software	that	can	be	downloaded	from	the
Qlik	website.	The	recipe	also	requires	the	SAP	connector	for	QlikView	to	be
installed.



How	to	do	it…
Once	we	install	the	SAP	connector,	the	RELOADSAPDD.qvw	and
ScriptBuilder.qvw	files	are	saved	on	the	hard	drive.

We	will	work	along	with	the	RELOADSAPDD.qvw	file,	which	is	stored	at	the
C:\ProgramData\QlikTech\CustomData\QvSAPConnector\ScriptBuilder

location.

In	order	to	extract	data	from	a	custom	database,	such	as	SAP:

1.	 Activate	the	legacy	mode	as	described	in	the	recipe	just	prior	to	this.
2.	 Open	the	Qlikview	file	and	input	the	SAP	credentials	to	generate	the

connection	string	similar	to	the	following:

CUSTOM	CONNECT	TO	

""Provider=QvSAPConnector.dll;ASHOST=192.168.210.166;SYSNR=00;C

LIENT=100;KeepCasing=1;NullDate=1;XUserId=UPJDRIRJJaSMVEVIXSFA;

XPassword=IQWOQIRNJbaMXUVMXLMGSEA;"";

3.	 Open	Qlik	Sense.	Copy	and	paste	the	SAP	Connection	string	from	the	script
editor	of	the	QlikView	file	to	Qlik	Sense.

4.	 Similarly,	one	can	copy	and	paste	the	load	script	generated	for	any	SAP
table	in	a	QlikView	file	to	a	Qlik	Sense	file.

5.	 Save	and	load	data.
6.	 The	data	load	editor	with	all	the	connection	strings	will	appear,	as	shown	in

the	following:



	



How	it	works…
The	essence	of	the	recipe	is	that	the	custom	connections	don't	work	in	Qlik
Sense,	unless	it	is	running	in	a	Legacy	mode.	The	user	can	copy	the	script
generated	in	the	QlikView	file	to	the	Qlik	Sense	Load	script	while	running	the
application	in	the	legacy	mode,	as	this	script	cannot	be	generated	directly	in	Qlik
Sense.



There's	more…
Qlik	Sense	can	extract	data	from	any	data	source	that	can	be	loaded	by	QlikView
(such	as	Salesforce)	in	practically	the	same	way	as	it	is	described	in	this	recipe.



See	also…
Activating	the	Legacy	Mode	in	Qlik	Sense®	desktop



Invoking	help	while	in	the	data	load
editor	or	the	expression	editor
As	a	Qlik	Sense	developer,	one	often	needs	access	to	the	help	module	in	order	to
search	for	certain	functions	or	simply	understand	their	usage	and	syntax	in
detail.	Help	is	available	in	the	dropdown	menu	on	the	toolbar.	However,	when
we	use	this	option,	it	takes	us	to	www.help.qlik.com/sense	and	then	we	again
need	to	search	for	the	keyword.	It's	not	a	huge	effort	but	it	would	be	more
beneficial	if	we	were	taken	directly	to	the	information	regarding	the	keyword	or
function	we	are	looking	for.



Getting	ready…
For	this	recipe,	we	will	use	the	Automotive.qvf	file,	which	comes	as	a	built	in
example	when	we	install	the	Qlik	Sense	Desktop.



How	to	do	it…
1.	 Open	the	Automotive.qvf	file	from	the	Qlik	Sense	desktop	hub.
2.	 Open	the	data	load	editor	and	go	to	the	Territory	data	tab.

3.	 Click	the	Help	( )	button	inside	the	data	load	editor.	This	will	highlight
the	script	so	that	all	the	keywords	are	then	clickable	links.

4.	 Click	on	the	keyword	pick	in	the	script.	This	will	take	us	to	the	correct
place	in	the	help	file,	as	shown:	

	



There's	more…
An	alternative	approach	that	can	be	used	in	Qlik	Sense	versions	prior	to	2.0.1	is
as	follows:

1.	 Highlight	the	key	word	pick	in	the	script.
2.	 Press	ctrl	+	h.	This	will	take	you	directly	to	the	content	explaining	Pick	on

the	help	page.

A	list	of	useful	shortcuts	for	Qlik	Sense	is	given	at	the	end	of	this	book.



See	also…
Keyboard	shortcuts	in	Qlik	Sense®	desktop



Previewing	data	in	the	Data	model
viewer
As	any	experienced	Qlik	developer	will	tell	you,	the	data	model	viewer	is	a	key
component	you	will	undoubtedly	spend	time	using	on	your	Qlik	journey.	Qlik
Sense	has	brought	with	it	some	nice	new	features.	We	will	also	delve	into	the
different	insights	that	can	be	gleaned	from	the	data	model	viewer:	



Getting	ready
For	this	recipe,	we	will	make	use	of	the	Data	model	viewer.qvf	application.
This	file	is	available	for	download	on	the	Packt	Publishing	website.



How	to	do	it…
1.	 Open	the	Data	model	viewer.qvf	application	that	has	been	downloaded

from	the	resource	library.
2.	 Click	on	data	model	viewer	in	the	Navigation	dropdown	on	the	toolbar.



How	it	works...
In	this	section	we	will	see	how	the	different	types	of	data	are	viewed.

Viewing	the	data	model

The	data	model	consists	of	a	number	of	tables	joined	by	the	key	fields.	The
following	screenshot	contains	functions	that	can	be	used	to	manipulate	the
layout	of	the	data	model:

	

The	detail	of	the	available	keys	(from	right	to	left)	is	given	as	follows:

Collapse	all:	This	reduces	down	the	tables	to	just	their	headers;	thus,	hiding
all	the	fields
Show	linked	fields:	Expands	the	tables	enough	to	only	display	the	key
fields	in	each
Expand	all:	Displays	all	the	fields	for	each	table
Internal	Table	viewer:	Shows	the	internal	representation	of	the	data	model
Layout:	Provides	options	to	auto	align	the	table	grid	or	space	out	across	the
screen
Preview:	Toggles	the	data	preview	screen	to	either	on	or	off

Viewing	the	associations

Clicking	on	a	table	will	highlight	its	associated	tables	in	orange.	The	customer's
table	is	selected	in	the	following	screenshot	and	the	shared	key	here	is	Address
Number:



	

Click	on	the	CustomerAddress	table	to	see	a	highlighted	expansion,	via	the
state	key,	as	shown:



	
Table	Meta	Data

The	data	model	viewer	also	provides	information	on	the	contents	of	each	table.

Click	the	header	of	the	customer	address	table	then	open	the	Preview	pane	by
clicking	the	Preview	button	in	the	bottom	left	hand	corner.

The	following	preview	will	be	displayed	at	the	bottom	of	the	screen:

	

Along	with	a	small	snippet	of	the	table	contents,	the	far	left	table	also	provides
some	high	level	table	information	about	the	number	of	rows,	fields,	keys	as	well
as	any	tags.

Next,	click	the	Address	Number	field	from	the	Customers	table	in	the	data
model	viewer.

You	can	now	see	more	detailed	information	about	the	individual	field.

These	are:

Density
Subset	ratio
Has	duplicates
Total	distinct	values
Present	distinct	values	non-null	values
Tags

This	information	is	very	helpful	when	we	are	debugging	issues.	If	a	count	does
not	return	the	expected	result,	you	may	want	to	ensure	that	there	are	no
duplicates.



If	a	selection	is	not	filtered	correctly	you	may	want	to	check	the	sub-set	ratio	of
the	key	and	so	on.



There's	more...
Double	clicking	a	table	header	in	the	data	model	viewer	will	either	collapse	or
expand	the	table	fully.



Creating	a	Master	Library	from	the
Data	model	viewer
To	help	reduce	the	repetition	and	developer	error,	Qlik	has	introduced	a	master
library	where	we	can	store	reusable	items,	such	as	dimensions,	measures	and
even	whole	visualizations.	For	people	experienced	in	Qlik's	other	products	such
as	QlikView,	just	think;	"no	more	linked	objects	and	storing	expressions	in
variables!"

It	is	easy	to	think	of	library	items	in	a	self-service	context.	Don't	get	me	wrong;
ultimately	you	will	have	to	decide	what	will	be	published;	from	your	data	model
to	the	world	for	their	own	analysis	purposes.	Having	said	that,	the	secret	sauce	of
this	recipe	is	in	saving	your	own	time.

It	is	a	productivity	hack	that	implies;	"automation	is	to	your	time	what
compound	interest	is	to	money".	While	it	is	not	an	exact	parallel,	this	is	a	nice
concept	to	frame	the	usefulness	of	timesaving	functions	in	Qlik	Sense.	The
effective	use	of	the	library	saves	time	spent	on	scrolling	down	field	lists,
rewriting	expressions	over	and	over,	applying	a	single	change	in	multiple	places,
and	so	on.

Once	you	have	saved	enough	time	to	eclipse	the	setup	investment,	the	value	of
taking	this	approach	can	only	compound	with	continuous	development.



Getting	ready
1.	 Create	a	new	Qlik	Sense	application	and	name	it	Master	Library.
2.	 Open	the	data	load	editor.
3.	 Enter	the	following	script	and	load	the	data	by	clicking	on	the	

	button.	(The	script	is	available	in	a	separate	text	file	that	can
be	downloaded	from	the	Packt	Publishing	website):

Data:

LOAD	*	INLINE	[

				Name,	Region,	Country,	City,	OrderId,	Sales,	Company,	

OrderDate

				Wooten,	C,	Mozambique,	Carmen,	1,	45.55,	Est	Nunc	Laoreet	

LLC,	22/12/14

				Blankenship,	Delta,	Cayman	Islands,	Sapele,	2,	95.76,	Lorem	

Donec	Inc.,	17/01/15

				Sheppard,	Wyoming,	Vatican	City	State,	Cheyenne,	3,	38.31,	

Lobortis,	07/08/14

				Goddard,	H,	Curaçao,	San	Francisco,	4,	86.33,	Non	Inc.,	

07/09/14

				Galloway,	Aragón,	Trinidad	&	Tobago,	Zaragoza,	5,	85.80,	

Diam	Proin.,	21/01/15

				Kirsten,	Tamil	Nadu,	Wallis	&	Futuna,	Neyveli,	6,	28.47,	

Mollis	Non	Limited,	03/05/14

				Holland,	Cartago,	Falkland	Islands,	San	Diego,	7,	1.34,	

Ullamcorper	Inc.,	17/07/14

				Thaddeus,	BC,	Canada,	Oliver,	8,	59.04,	Ante	Nunc	Mauris	

Ltd,	17/02/15

				Lareina,	CA,	Spain,	San	Diego,	9,	4.55,	Pellentesque	

Tincidunt	Limited,	29/07/14

				Jescie,	Vienna,	Monaco,	Vienna,	10,	54.20,	Ultricies	Ligula	

Consulting,	16/06/14

				Logan,	IL,	Saint	Barthélemy,	Paris,	11,	91.31,	Mi	

Foundation,	13/12/14

				Shannon,	CG,	Nepal,	Aberystwyth,	12,	80.86,	Auctor	Non	LLC,	

03/05/14

				Andrew,	SO,	Argentina,	Sokoto,	13,	88.78,	Scelerisque	

Mollis	Associates,	12/12/14

				Jocelyn,	WP,	Tanzania,	Konin,	14,	15.91,	Ligula	Tortor	

Dictum	Ltd,	22/08/14

				Gordon,	FL,	Hong	Kong,	Miami,	15,	93.97,	Suscipit	Inc.,	

12/05/14

];



How	to	do	it...
Once	the	data	has	been	loaded,	you	can	check	the	results	by	opening	the	data

model	viewer	through	the	navigation	dropdown	( )	in	the	top	corner	on	the
left	hand	side	of	the	toolbar,	as	shown	in	the	following	screenshot:	

You	can	find	the	Preview	button	to	the	bottom	left	of	the	screen.	There	are
several	other	places	in	Qlik	Sense	where	you	can	create	master	library	items	but
the	data	model	preview	screen	is	the	best,	as	it	also	lets	you	see	the	data	first.
Take	a	minute	to	browse	the	data	you	have	loaded	in	data	model	viewer.

1.	 In	the	data	model	viewer,	select	the	Data	table	by	clicking	on	its	header	and
then	click	the	Preview	button	to	view	the	fields	and	the	field	values	loaded
from	the	Data	table.



2.	 The	Preview	window	will	appear	as	shown	in	the	following:	

Select	the	Region	field	from	the	table	to	get	the	preview	as	shown	in	the

following:	

Next,	click	the	 	button.
The	following	window	appears.	If	you	are	likely	to	publish	this	dimension	for

consumption	by	users,	you	can	enter	a	description	here:	



It	is	advised	to	use	tags	to	make	our	life	easier.	Add	the	tag	Geo	and	click	on	
.
Now	click	on	 	to	create	a	Master	dimension	in	the	library.
Repeat	this	process	for	the	Country	and	City	fields.
Click	on	 	to	go	back	to	the	data	model	viewer.
Finally,	it's	time	to	create	a	measure.	Select	the	Sales	field	from	the	Data	table

in	the	data	model	viewer.



Click	the	 	button.	When	we	create	a	Master	measure	we
need	to	make	sure	we	use	an	aggregation	function	such	as	Sum,	Avg,	and	so	on,
along	with	the	selected	field.
In	the	Create	new	measure	window,	type	SUM	in	front	of	(Sales),	as	shown	in

the	following	image:	

Click	on	Create.
Save	the	changes	made	in	the	master	library	by	clicking	on	the	 	button

on	the	toolbar	in	the	table	preview.	Exit	the	table	preview	by	going	to	the	App
Overview.
Open	(or	create)	a	sheet	and	enter	the	edit	mode	by	clicking	on	the	

	button.
Once	you	are	in	the	edit	mode,	click	the	chain	( )	icon	on	the	left	hand	side

of	the	asset	panel	to	open	the	Master	items	menu.
To	add	visualizations,	first	create	them	in	the	user	interface	then	drag	them

into	the	library.

While	the	Master	item	menu	panel	is	very	useful	to	speed	up	the	development
when	defining	the	contents,	it	is	easier	to	do	it	from	the	filters	pane.	In	short,	you
can	browse	the	entire	contents	of	your	data	model	and	right-click	on	the	most
important	fields	to	add	the	ones	that	will	be	frequently	used.



How	it	works...
1.	 Right	click	on	a	field	from	the	field's	pane	that	you	want	to	add	to	the

master	library.

2.	 Click	on	Create	Dimension,	enter	a	Description	and	any	relevant	Tags,
click	Done	once	finished:





There's	more…
We	can	also	create	Master	dimensions	and	measures	through	the	GUI.	In	order
to	do	this:

1.	 Open	an	existing	sheet	or	create	a	new	one.
2.	 Click	on	the	Master	items	 	icon.
3.	 Click	on	either	Dimensions	or	Measures.	This	will	enable	an	option	to

create	new	library	items.



Using	a	Master	Library	in	the	Edit
mode
As	mentioned	in	the	previous	recipe,	a	great	benefit	of	creating	a	master	library
is	to	save	you	time	and	reduce	the	complexity	by	applying	global	changes	to
your	visualizations.

There	are	three	main	areas	in	the	asset	panel	when	editing	a	Qlik	Sense	sheet
(Objects,	Fields,	and	Master	items).	Clicking	the	 	chain	button	opens	the
Master	items	pane.

From	here,	you	can	manage	every	aspect	of	the	Master	items,	such	as	renaming,
replacing,	deleting,	and	editing.



Getting	ready
You	can	continue	to	use	the	application	from	the	previous	recipe.

1.	 If	you	have	not	completed	the	previous	recipe.	Load	the	following	in	your
data	load	editor:

LOAD	*	INLINE	[

Country,	Area,	Sales

USA,	North,	1000

USA,	North,	1200

USA,	South,	2500

USA,	South,	2500

UK,	North,	1000

UK,	North,	2500

UK,	South,	2000

UK,	South,	1900

];

Add	Country	and	Area	as	Master	dimensions	both	with	the	tag	Geo.
Add	Sales	as	a	Master	measure.



How	to	do	it...
1.	 Open	the	App	overview	screen	by	clicking	on	the	navigation	dropdown	on

the	toolbar	at	the	top.
2.	 Create	a	new	sheet	or	open	an	existing	one.
3.	 Enter	the	edit	mode	by	clicking	on	the	 	button.
4.	 Click	on	the	object	pane	button	 	and	double	click	on	the	bar	chart

button.	 .The	chart	will	be	added	to	the	main	content	area
automatically.

5.	 Type	Geo	in	the	search	box	of	the	asset	panel	on	the	left	of	your	screen.
While	there	are	no	charts	called	Geo,	the	search	has	flagged	up	our	two
tagged	dimensions	in	the	master	library	pane	with	a	yellow	circle	like	this	

.
6.	 Next,	drag	the	Area	field	to	where	it	says	Add	dimension.	Repeat	the	steps

where	the	Country	field	selects	Add	"Country"	when	prompted,	as
shown:	



Clear	your	search	on	Geo	by	pressing	the	 	button.
Click	on	Measures.
Drag	the	Sales	measure	from	the	asset	panel	over	to	the	add	measure	area	of

the	chart.	Voila!	You	have	created	your	first	visualization	using	Master
dimensions	and	measures:	



You	can	now	drag	this	chart	into	the	asset	panel	and	it	will	become	a	master
visualization.



There's	more…
If	you	delete	a	Master	dimension	or	Master	measure,	the	visualizations	that	use
the	deleted	Master	item	will	not	work	unless	you	replace	it	with	a	new
dimension	or	measure.	The	same	applies	to	deleting	a	field	from	the	data	model;
the	reference	will	remain	a	part	of	the	Master	item	pane	until	it's	updated	from
the	edit	screen.

Echoing	a	comment	in	the	previous	chapter	regarding	time	saving	and	creating
Master	measures,	replaces	the	need	to	write	expressions	as	variables	for	reuse.
Another	piece	of	QlikView	functionality	that	has	been	replicated	and	expanded
upon	is	the	concept	of	linked	objects.	Any	updates	you	make	in	the	Master
visualization	area	will	be	applied	globally.

If	you	rename	a	field	in	your	script	without	moving	the	position	it	will	be
applied	automatically	to	all	the	objects.



Chapter	2.	Visualizations
In	this	chapter,	we	will	cover	some	visualization	tips	and	tricks	to	create	a
compelling	dashboard	in	Qlik	Sense:

Creating	Snapshots
Creating	and	adding	content	to	a	story
Adding	embedded	sheets	to	the	story
Highlighting	the	performance	measure	in	a	bar	chart
Associating	persistent	colors	to	field	values
Using	the	colormix1	function
Composition
Relationships
Comparison
Distribution
Structuring	visualizations



Introduction
A	typical	Qlik	Sense	application	should	always	follow	the	Dashboard	Analysis
Reporting	(DAR)	methodology.	This	methodology	focuses	on	developing	a
Dashboard	sheet	followed	by	an	analysis	sheet	and	then	a	reports	sheet.	The
Dashboard	projects	the	high-level	figures	of	the	business;	the	analysis	sheet
gives	more	control	to	the	end	user	to	filter	the	data,	while	the	Reports	sheet	has
the	detailed	information	at	a	granular	level.	For	more	information	on	the	DAR
concept,	visit:

https://community.qlik.com/blogs/qlikviewdesignblog/2013/11/08/dar-
methodology

While	this	concept	can	be	easily	implemented	within	the	application,	one	often
tends	to	forget	the	best	design	practices	that	help	in	making	the	applications
more	engaging	for	the	users.	An	optimal	design	will	convey	the	right
information	to	the	right	people	at	the	right	time.	This	will	elevate	the	decision
making	process	within	the	organization.

The	following	chapter	focuses	on	some	of	the	key	concepts	in	data	visualization
that	will	help	the	users	take	their	Qlik	Sense	design	capabilities	to	the	next	level.

It	also	discusses	the	importance	of	choosing	the	right	visualization	for	the	right
purpose.	Some	useful	blogs	written	by	the	experts	in	data	visualization	can	be
accessed	by	the	users	to	enhance	their	knowledge:

http://www.perceptualedge.com/blog/
http://global.qlik.com/uk/blog/authors/patrik-lundblad

https://community.qlik.com/blogs/qlikviewdesignblog/2013/11/08/dar-methodology
http://www.perceptualedge.com/blog/
http://global.qlik.com/uk/blog/authors/patrik-lundblad


Creating	Snapshots
Snapshots	are	an	exciting	feature	in	Qlik	Sense	that	enables	the	users	to	capture
the	point	in	time	state	of	the	data	object.	Snapshots	work	as	insights	for	a	story
which	will	be	discussed	in	later	recipes.



Getting	ready
For	the	sake	of	this	exercise,	we	will	make	use	of	the	Automotive.qvf	Qlik
Sense	application.	This	application	is	downloaded	as	a	sample	file	with	the
default	Qlik	Sense	desktop	installation	and	can	be	accessed	through	the	Qlik
Sense	hub.

The	sample	files	may	differ	by	region.	If	the	Automotive.qvf	application	is	not
available	in	the	Qlik	Sense	hub,	it	can	be	downloaded	from	the	Packt	Publishing
website.

Perform	the	following	steps	once	you	download	the	application	from	the	Packt
Publishing	website:

1.	 Copy	the	.qvf	file	to	C:\Users\<user>\Documents\Qlik\Sense\Apps
folder.

2.	 Open	Qlik	Sense	desktop	and	the	app	will	appear	in	the	hub.



How	to	do	it…
Qlik	Sense	provides	you	the	opportunity	to	take	a	single	snapshot	of	a	selected
object	or	take	several	snapshots	of	multiple	objects	at	the	same	time.

In	order	to	take	Snapshots,

1.	 Open	the	Automotive.qvf	application	from	the	Qlik	Sense	hub:	

	
Open	the	Sales	Overview	sheet	and	select	the	trendline	chart	Vehicle	Sales	by

year.	Right-click	on	the	object	to	display	the	options	and	select	 	to	take	a
snapshot.
The	snapshot	is	saved	within	the	snapshot	library	and	is	titled	with	the	same

name	as	the	object.

In	order	to	take	multiple	snapshots	at	the	same	time,	use	the	following	steps:

1.	 While	you	are	still	in	the	sheet	view,	click	 	on	the	toolbar.	The	objects
for	which	we	can	take	snapshots	are	marked	in	broken	orange	lines,	as
shown:	



	
Next,	click	on	any	object	whose	snapshot	you	want	to	take.	As	we	click

around	on	the	sheet	objects,	a	snapshot	gets	saved	in	the	library	automatically
and	a	snapshot	image	 	is	displayed	at	the	top	right	corner	for	every	individual
object	along	with	the	count	of	snapshots	attached	to	the	object.
For	our	exercise,	we	will	save	snapshots	for	Car	Sales	by	Industry	and

Vehicle	sales	by	Region.
As	mentioned,	the	snapshots	are	again	saved	within	the	snapshot	library	and

are	titled	with	the	same	name	as	the	objects.



How	it	works…
Snapshots	are	usually	taken	by	the	users	when	they	want	to	store	the	point-in-
time	picture	of	an	object	corresponding	to	any	selections.	Snapshots	are
synonymous	with	taking	a	static	picture	of	the	object	on	the	screen.	As	this	is	a
static	picture,	it	does	not	get	updated	with	the	change	in	data	or	with	the	change
in	state	of	the	individual	Qlik	Sense	object.	The	state	and	selections	within	a
snapshot	will	not	be	updated	after	a	data	reload.

A	Snapshot	can	be	called	a	sibling	of	another	Qlik	Sense	feature	called
Bookmarks.	The	difference	being,	Bookmarks	capture	the	state	of	selections
within	an	application,	while	Snapshots	store	the	state	of	objects	as	it	was	at	a
particular	point	of	time.	The	data	projected	by	a	bookmark	gets	updated	on	data
reload.



There's	more…
Snapshots	form	the	basis	of	creating	stories	in	Qlik	Sense.	We	deal	with	stories
in	the	following	sections.



See	also
Creating	and	adding	content	to	a	story



Creating	and	adding	content	to	a
story
Qlik	Sense	introduces	the	concept	of	storytelling	within	the	application.	The	data
story	interface	helps	the	user	to	collate	all	the	important	observations	and
insights	from	the	application	to	create	a	convincing	narrative	and	present	it	to	the
intended	audience	in	the	form	of	a	slideshow.



Getting	ready
As	in	the	previous	recipe,	we	will	again	make	use	of	the	Automotive.qvf	Qlik
Sense	application.



How	to	do	it…
To	create	a	story,	perform	the	following	steps:

1.	 Open	the	Automotive.qvf	application.

2.	 While	you	are	still	on	the	App	overview	page,	click	 	on	the
toolbar.

3.	 Click	on	the	 	sign	to	create	new	story.
4.	 Add	the	story	name	as	Sales	Overview	and	description	as	A	narrative	of

the	overall	sales	for	the	company.
5.	 Click	outside	the	description	window	to	save	the	story.

Adding	contents	to	a	storyboard:

1.	 Open	the	storyboard	for	"Sales	Overview"	by	clicking	on	the	thumbnail.
2.	 The	right	side	pane	of	the	storyboard	represents	five	libraries	which	serve

as	the	source	for	the	contents	which	we	can	use	for	our	storyline:	

Click	on	the	Snapshot	library	icon.	This	will	display	the	list	of	snapshots	we



took	in	the	earlier	recipe:	
Drag	and	drop	the	Vehicle	sales	by	region	and	Car	sales	by	territory

snapshot	on	the	sheet.
Click	on	the	Text	Library.	Drag	and	drop	the	Title	box	on	the	sheet.
Double	click	the	Title	box	and	add	the	title	Sales	by	Region	and

Territory.
Click	on	the	Text	Library.	Drag	and	drop	the	Paragraph	box	on	the	sheet.
Double	click	on	the	Paragraph	box	and	add	the	following	text:

AOME	region	has	the	highest	number	of	total	car	sales	while	if

we	consider	commercial	vehicles,	Americas	leads	the	way.

China	is	the	biggest	market	for	cars	followed	by	United	States.

There	is	very	little	comparison	amongst	the	volume	of	sales	for

european	nations	Italy	France	and	United	Kingdom.

Click	on	the	Shapes	library.	Drag	and	drop	the	 	and	 	shapes	on	the
sheet.
Save	the	story	by	clicking	on	 	on	the	toolbar.
The	effective	story	interface	should	look	like	this:	



The	story	can	be	played	as	a	presentation	by	clicking	on	the	 	button	on
the	left-hand	side	vertical	pane.



How	it	works…
The	story	with	all	the	essential	elements,	namely	the	snapshots,	commentary	and
the	highlighters,	conveys	the	essence	of	the	data	to	the	audience.	The	data	added
through	the	snapshots	contains	static	point	in	time	information.	Since	stories	are
native	to	Qlik	Sense,	there	is	no	need	to	create	separate	PowerPoint	files	for
presentations.	Although	with	Qlik	Sense	version	2.1.1,	one	has	the	option	to
export	the	stories	to	PowerPoint	so	that	they	can	be	shared	offline.



There's	more…
While	working	in	the	story	Edit	mode,	click	on	any	individual	object.	On
clicking	the	object	we	will	find	two	options	highlighted	on	the	top	right-hand

corner.	The	first	one	is	 	for	Replace	snapshot	and	the	other	one	is	 	for
Unlock	the	snapshot.	Use	the	following	steps	to	explore	the	Replace	snapshot
and	Unlock	the	snapshot	functionalities:

1.	 Click	on	Replace	snapshot.
2.	 The	following	dropdown	appears	which	lists	all	the	snapshots	captured	for

the	original	visualization.	The	snapshot	in	use	is	marked	with	a	 :	

The	user	can	replace	the	existing	snapshot	with	a	new	one.

Alternatively,	the	user	can	click	on	the	 	button	in	the
dropdown	that	opens	the	original	sheet	where	the	visualization	resides.	New
snapshots	can	then	be	created	using	the	live	data.

Click	on	 	button	on	the	original	sheet	to	return	to	the	story.

Next,	click	on	the	 	button	for	visualization.	This	will	unlock	the	snapshot
and	activate	the	edit	 	option.



Click	on	 	to	change	the	basic	properties	of	the	object.	The	modified
properties	for	the	object	are	specific	to	the	story.	The	object	on	the	Qlik	Sense
sheet	still	has	the	original	properties,	as	shown:	

A	Qlik	Sense	storyline	can	also	have	embedded	sheets.	This	is	particularly	useful
if	we	want	to	showcase	the	entire	content	of	the	sheet	on	the	slide.



See	also
Adding	embedded	sheets	to	the	story



Adding	embedded	sheets	to	the	story
Multiple	sheets	can	be	added	to	the	story	and	the	following	section	deals	with
the	steps	involved.



Getting	ready
As	in	the	previous	recipe,	we	will	again	make	use	of	the	Automotive.qvf	Qlik
Sense	application:

1.	 Open	the	Automotive.qvf	application	from	the	Qlik	Sense	hub.
2.	 Next,	open	the	Sales	Overview	story,	which	was	created	in	the	previous

recipe	by	clicking	 	on	the	toolbar.



How	to	do	it…
1.	 In	the	story	view,	click	on	the	 	image	at	the	bottom	left	corner	of	the

storyboard.
2.	 Select	either	Sheet	left-aligned	or	Sheet	from	the	Add	slide	pop	up:	

A	slide	with	a	sheet	placeholder	is	added	to	the	screen.	Next,	click	on	Select
Sheet	and	select	the	In-use	overview	sheet	from	the	dialog	box,	as	shown	in	the
following	screenshot:	

Save	the	file	by	clicking	on	the	 	button.



The	story	can	be	played	as	a	presentation	by	clicking	on	the	 	button	on
the	left-hand	side	vertical	pane.



How	it	works…
When	we	embed	a	sheet	into	our	story,	it	places	all	the	contents	of	the	desired
sheet	on	the	slide.	The	embedded	sheet	always	has	the	same	set	of	selections	as
the	sheet	in	the	sheet	view.



There's	more…
When	we	play	the	story,	you	will	observe	that	we	have	two	buttons	at	the	top	of

the	embedded	sheet	slide,	namely	 	and	 .	Selections
can	be	made	on	the	embedded	sheet	by	clicking	on	each	individual	object.	The	

	button	clears	the	selections	and	the	 	option	takes
the	user	back	to	the	original	sheet	where	new	snapshots	of	objects	can	be	taken.

The	 	button	is	also	available	in	the	edit-mode	of	the	embedded
sheet.

We	can	add	effects	and	images	to	the	story	using	the	Effects	and	Media	library,
which	is	available	in	the	storytelling	view.



Highlighting	the	performance
measure	in	a	bar	chart
One	of	the	essential	components	of	a	Qlik	Sense	dashboard	is	the	Key
Performance	Indicators	or	the	KPIs.	The	KPIs	indicate	the	health	of	the
company	based	on	specific	measures.	The	information	displayed	in	the	KPI
should	stand	out	distinctly	and	demand	attention.	For	example,	one	of	the	key
KPIs	that	a	CEO	of	the	company	may	like	to	have	on	his	dashboard	is	"Actuals
vs	Budget".	A	CEO	is	mostly	interested	in	knowing	if	the	company	is	below	or
above	the	budgeted	figures.	So,	it	makes	sense	to	highlight	the	required
information	inside	the	visualization	object.	The	following	recipe	explains	and
shows	you	how	to	do	this	in	a	bar	chart.



Getting	ready
A	"Dial	Gauge"	is	quite	commonly	used	to	display	the	key	KPIs	in	Qlik	Sense.
However,	the	best	design	practices	say	that	the	"Bar	chart"	is	the	most	effective
way	of	conveying	the	information	to	the	user.	The	following	example	makes	use
of	a	bar	chart	to	strengthen	this	thought.

Perform	the	following	steps	to	get	started:

1.	 Create	a	new	Qlik	Sense	application.	Name	it	Performance	Measure_Bar
Chart.

2.	 Open	the	data	load	editor.
3.	 Load	the	following	script,	which	contains	information	on	the	Actuals	and

Budget	for	four	products.	The	script	can	be	downloaded	from	the	Packt
Publishing	website:

Products:

LOAD	*	INLINE	[

Product,	Actuals,	Budget

Footwear,	100000,	120000

Tyres,	180000,	150000

Mountain	Bikes,	250000,	195000

Road	Bikes,	200000,	225000

];



How	to	do	it…
The	following	steps	highlight	the	performance	measure	in	a	bar	chart:

1.	 Open	the	App	overview	and	create	a	new	sheet.
2.	 Create	a	bar	chart	on	the	sheet.
3.	 Add	Product	as	the	first	dimension.
4.	 Under	the	Properties	panel	present	on	the	right-hand	side.	Click	on	the	

	dropdown	menu	and	select	Dimension.

5.	 Open	the	expression	editor	by	clicking	on	 .
6.	 Add	the	following	calculation	as	the	second	dimension	and	name	it	as

Performance	Type:

=ValueList	('Actuals	Up	To	Budget','Actuals	Below	

Budget','Actuals	Above	Budget')

Click	on	 	again	and	add	the	following	measure	to	the	object	and	call
it	as	Performance:

if(ValueList	('Actuals	Up	To	Budget','Actuals	Below	

Budget','Actuals	Above	Budget')='Actuals	Up	To	Budget',	

RangeMin(Sum(Budget),Sum(Actuals)))/Sum(Budget)	,

if(ValueList	('Actuals	Up	To	Budget','Actuals	Below	

Budget','Actuals	Above	Budget')='Actuals	Below	Budget'	,

num((RangeMax(Sum(Budget)-	

Sum(Actuals),0))/Sum(Budget),'$#,##0.00;-$#,##0.00')	,

(RangeMax(Sum(Actuals)-Sum(Budget),0))/Sum(Budget)	)	)

Once	we	define	the	Performance	measure,	we	will	notice	that	just	below	the
Expression	box	for	the	measure,	we	get	a	dropdown	for	number	formatting.
Under	this	dropdown,	change	the	number	format	to	Number.	Next,	we	define
the	exact	format	of	the	number.	To	do	this,	switch	off	Custom	Formatting	and
then	under	the	dropdown	below	that	select	Formatting	representation	as	12%.
Under	Appearance,	click	on	General	and	add	the	Product	Performance	title.
Under	Sorting,	set	the	sort-order	for	Performance	Type	as	alphabetically

and	Descending.
Under	Appearance,	click	on	Presentation	and	pick	the	style	for	the	chart	as

stacked	and	Horizontal.
Under	Colors	and	Legend,	switch	off	Auto	Colors	to	activate	custom	colors.
Along	with	the	custom	colors,	a	dropdown	to	define	the	colors	is	also



activated.	This	is	situated	right	below	the	colors	switch.	Under	this	dropdown
select	By	expression.
Add	the	following	expression	under	the	color	expression:

if(ValueList('Actuals	Up	To	Budget','Actuals	Below	Budget','Actuals	

Above	Budget')='Actuals	Up	To	Budget',rgb(234,234,234),

if(ValueList('Actuals	Up	To	Budget','Actuals	Below	Budget','Actuals	

Above					Budget')='Actuals	Below	Budget',rgb(255,0,0),rgb(0,255,0)	

)

			)

Make	sure	that	The	expression	is	a	color	code	is	checked.
The	resulting	chart	will	look	like	the	following	screenshot:	



How	it	works…
The	chart	in	this	recipe	shows	the	user	the	relative	performance	of	each	product.
The	colored	segments	highlight	the	extent	by	which	a	product	has	exceeded	or
failed	to	reach	the	budgeted	value.	The	Green	segment	indicates	that	the	product
has	fared	well	while	the	Red	segment	indicates	that	the	product	is	below	the
budgeted	figure.

The	preceding	example	makes	use	of	the	ValueList	function	in	both	dimension
and	measure.	For	dimension,	this	results	in	three	string	values,	namely	"Actuals
Up	To	Budget",	"Actuals	Below	Budget",	and	"Actuals	Above	Budget"	as	row
labels,	which	are	further	referenced	in	the	measure.

The	measure	takes	the	values	from	the	dimension	and	references	them	in	a
nested	If	statement	as	an	input	to	three	aggregated	calculations.

We	use	the	ValueList	function	in	this	recipe	as	Qlik	Sense	doesn't	allow	you	to
have	custom	colors	for	each	measure,	which	we	needed	in	order	to	do	the
highlighting.



There's	more…
The	same	information	can	be	conveyed	using	a	CapVentis	Redmond	Pie	Gauge,
the	credit	for	which	goes	to	Stephen	Redmond,	former	CTO	of	Capventis.	The
Redmond	Pie	Gauge	chart	can	be	accessed	on	Qlik	Branch	at
http://branch.qlik.com/projects/showthread.php?159-CapVentis-Redmond-Pie-
Gauge-for-Qlik-Sense&highlight=redmond+pie+gauge.

http://branch.qlik.com/projects/showthread.php?159-CapVentis-Redmond-Pie-Gauge-for-Qlik-Sense&highlight=redmond+pie+gauge


See	also
Use	the	Colormix	function



Associating	persistent	colors	to	field
values
The	best	practices	say	that	a	designer	should	avoid	using	bar	charts	with	multi-
colored	bars	or	having	too	many	colors	in	any	of	your	chart	objects.	But	at	times,
we	need	to	cater	to	the	demands	of	the	organization	and	take	an	uncalled	for
approach	to	designing.	The	following	recipe	explains	how	to	associate	distinct
field	values	to	different	colors	in	the	Qlik	Sense	script.



Getting	ready
This	recipe	serves	to	be	a	good	example	to	demonstrate	the	use	of	Pick	function
in	the	script.	Use	the	following	steps	to	get	started:

1.	 Create	a	new	Qlik	Sense	application	and	name	it	Persistent	Colors.
2.	 Open	the	data	load	editor.
3.	 Load	the	following	script	that	contains	information	about	the	Actuals	and

Budget	of	four	products.	The	script	is	available	for	download	on	the	Packt
Publishing	website:

ProductsTemp:

LOAD	*	INLINE	[

Product,	Actuals,	Budget

Footwear,	100000,	120000

Tyres,	180000,	150000

Mountain	Bikes,	250000,	195000

Road	Bikes,	200000,	225000

];

Products:

LOAD	*,

pick(match("Product",	'Footwear',	'Tyres',	'Mountain	Bikes',	

'Road	Bikes'),	RGB(236,129,0),RGB(250,185,0),	RGB(70,137,164),	

RGB(141,25,8))	as	"Product	color"

RESIDENT	ProductsTemp;

Drop	table	ProductsTemp;



How	to	do	it…
1.	 Open	the	App	overview	and	create	a	new	sheet.
2.	 Create	a	bar	chart	on	the	sheet.
3.	 Use	Product	as	dimension.
4.	 Use	Sum	(Actuals)	as	measure.	Label	it	as	Actuals.
5.	 Under	Colors	and	Legend,	switch	off	Auto	Colors	to	activate	custom

colors.
6.	 Along	with	the	custom	colors,	a	dropdown	to	define	the	colors	is	also

activated.	This	is	situated	right	below	the	colors	switch.	Under	this
dropdown,	select	By	expression.

7.	 Add	the	following	expression	under	the	color	expression:

=[Product	color]

Make	sure	that	The	expression	is	a	color	code	is	checked.
The	result	would	be	as	follows:	

	



How	it	works…
The	Pick	function	used	in	the	script	links	values	in	the	Product	field	to	distinct
RGB	values.	Each	product	is	displayed	in	a	different	color	bar	when	the	Product
color	field	is	used	in	the	color	expression	of	the	chart.



There's	more…
Persistent	colors	can	also	be	obtained	through	the	chart	properties	when	we
select	the	colors	by	dimension.	However,	using	this	approach	we	can't	have
custom	colors	but	have	to	depend	on	the	color	scheme	in	Qlik	Sense.



See	also
Use	of	ColorMix1	function	to	establish	a	color	gradient	in	charts



Using	the	ColorMix1	function
Heat	maps	are	a	common	requirement	in	most	of	the	BI	implementations.	A
Colormix1	function	helps	to	create	a	gradient	between	two	colors.	Look	at	the
following	recipe	to	understand	the	use	of	this	function.



Getting	ready
We	will	make	use	of	a	simple	Inline	load	for	this	recipe.	Perform	the	following
steps	to	get	started:

1.	 Create	a	new	Qlik	Sense	application.	Name	it	HeatMaps_Colormix1.
2.	 Open	the	data	load	editor.
3.	 Load	the	following	script	that	gives	you	information	about	Actuals	and

Budget	for	products:

Products:

LOAD	*	INLINE	[

Product,	Actuals,	Budget

Footwear,	100000,	120000

Tyres,	180000,	150000	

Mountain	Bikes,	250000,	195000

Road	Bikes,	200000,	225000

Chains,	80000,	90000

Helmets,	240000,160001

Gloves,	56000,125000

Pedals,	45000,100000

Rucksacks,	300000,450000

];



How	to	do	it…
1.	 Open	the	App	overview	and	create	a	new	sheet.
2.	 Create	a	bar	chart	on	the	sheet
3.	 Use	Product	as	dimension.
4.	 Use	Sum	(Actuals)	as	measure	and	label	it	as	Actuals.
5.	 Switch	off	Auto	Colors	to	activate	custom	colors	under	Colors	and

Legend,.
6.	 Along	with	the	custom	colors,	a	dropdown	to	define	the	colors	is	also

activated.	This	is	situated	right	below	the	colors	switch.	Under	this
dropdown,	select	By	expression.

7.	 Add	the	following	expression	under	the	color	expression:

colormix1(sum(Actuals)	/	$(=max(aggr(sum(Actuals),	Product))),	

white(),	RGB(0,	70,	140))

Under	Sorting,	promote	Sales	above	Product	in	the	order	of	priority.	This	can
be	done	by	holding	the	 	button	and	dragging	it	to	Sales	above	Priority.
Set	the	Sort	order	for	Sales	as	Sort	numerically	and	Descending.
Make	sure	The	expression	is	a	color	code	is	checked.
The	result	will	be	as	follows:	

	



How	it	works…
The	colormix1	function	creates	a	gradient	between	two	colors	using	a	number
that	varies	from	0	to	1.

We	know	that	the	bar	for	the	product	with	the	highest	value	of	Actuals	will	be
the	most	intense.	So	to	achieve	a	value	between	0	and	1,	we	calculate	the	relative
shares	of	each	actual	value	against	the	highest	actual	value	from	the	entire
product	range.	That	is	"Actuals	for	each	product"/"The	highest	Actuals	value
from	the	entire	product	range".

In	our	expression,	the	Colormix1	function	helps	to	establish	a	gradient	from
white	to	RGB	(0,	70,	140).



There's	more…
A	sequential	color	gradient	across	the	chart	can	be	obtained	through	the	chart
properties	if	we	select	the	color	by	measure.	However,	we	can't	have	custom
colors	if	we	use	this	approach	and	we	will	have	to	depend	on	the	color	scheme	in
Qlik	Sense.



See	also
Similar	to	Colormix1,	we	can	also	use	the	Colormix2	function,	which	gives	us
an	option	to	have	an	intermediate	color	between	the	lower	and	upper	limit	color.



Composition
Composition	can	be	defined	as	looking	at	a	particular	measure	compared	to	the
whole.

For	example,	In	a	"Sales	by	Region"	chart,	the	sales	for	each	singular	region
would	be	a	discrete	value	while	the	total	sales	across	all	countries	would	be	the
"Whole".

Total	sales	can	be	divided	into	"Relative	shares"	for	each	region.	Having
information	on	"Relative	Sales	Percentages"	as	compared	to	the	total	sales	has	a
greater	impact	rather	than	viewing	just	the	plain	sales	figures.	Eureka	moments
are	much	more	likely	when	people	use	a	tool	to	answer	their	own	questions,
which	is	a	core	belief	behind	the	design	of	Qlik	Sense.

As	with	everything	else,	data	composition	can	be	visualized	in	multiple	ways.
Understanding	what	you	are	trying	to	achieve	will	eventually	dictate	the	best
choice	of	visualization.

For	example,	depending	on	what	matters,	each	of	the	following	points	will	favor
a	different	form	of	visualization:

Relative	differences
Relative	and	absolute	differences
Share	of	the	total
Accumulation	to	the	total	(or	subtraction)
Breaking	down	components	of	components

As	such,	each	example	in	the	next	four	recipes	will	be	supported	by	a	goal,
questions,	and	an	analysis	description,	which	is	as	follows:

Goal:	As	a	business	analyst,	I	want	to	report	on	the	best	regions	to	focus
our	marketing	strategy	on
Question:	I	want	to	see	how	our	total	revenue	is	shared	this	year	across	the
various	regions
Analysis:	How	the	total	revenue	is	divided	per	region	and	if	it	is
performing	positively



Getting	ready
Downloading	the	source	files:	Downloading	the	example	code

Tip

You	can	download	the	example	source	files	from	your	account	at
http://www.packtpub.com,	for	all	Packt	books	that	you	have	purchased.	If	you
have	purchased	the	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly
to	you.

Use	the	following	steps	to	get	started:

Download	Chapter	2	-	Sales.qvf	application	from	the	Packt	Publishing
website
Save	the	application	at	the	following	location:	C:\Users\
<user>\Documents\Qlik\Sense\Apps

Open	the	application	though	the	Qlik	Sense	hub

http://www.packtpub.com
http://www.packtpub.com/support


How	to	do	it…
1.	 Click	the	button	in	the	top	right-hand	corner	in	the	application	overview

and	click	the	Create	New	Sheet	button.	Name	this	sheet	as	Composition.

2.	 Go	to	the	charts	asset	pane	 	and	double	click	the	line	chart	button	 .
3.	 Add	the	following	measure	(m)	and	dimensions	(d)	in	the	same	order	as

follows:

(m)	Sum(Sales)

(d)		Month

(d)		Region

Select	Area	from	the	properties	pane	under	the	Appearance	|	Presentation
menu.
Finally,	tick	the	Stacked	area	box.	The	following	screenshot	is	an	example	of

the	final	visualization:	

	



How	it	works…
Enabling	the	right	property	settings	can	turn	a	line	chart	into	a	stacked	area
chart.	This	clearly	shows	the	differences	when	we	analyze	the	relative	and
absolute	composition	of	many	time	periods,	as	shown	in	the	preceding	example.
If	you	had	less	time,	say	the	last	3	years,	then	you	would	use	the	same	approach,
however;	you	will	change	the	chart	type	to	Bar	instead	of	Line	as	the	magnitude
of	change	is	more	important	than	the	change	trend.



There's	more…
When	looking	at	the	composition	in	terms	of	accumulation	or	subtraction	from
the	TOTAL,	a	good	option	for	representation	is	the	waterfall	chart.	If	the	only
important	differences	are	the	relative	differences	are,	then	write	your	calculation
as	a	percentage	of	Total.

To	achieve	this,	follow	the	following	steps:

1.	 Replace	the	Sales	expression	from	the	preceding	recipe	with	the	following:

Sum(Sales)	/	sum(	TOTAL	<Month>	Sales).

2.	 Once	we	define	the	preceding	measure,	we	will	notice	that	just	below	the
expression	box	for	the	measure,	we	get	a	dropdown	for	number	formatting.
Under	this	dropdown,	change	the	number	format	to	Number.	Next	we
define	the	exact	format	of	the	number.	To	do	this,	switch	off	custom
formatting	and	then	under	the	dropdown	below	that	select	Formatting
representation	as	12%.	This	will	produce	the	following	100	percent	stacked
area	chart:

	



Relationships
Seeing	relationships	in	data	is	something	that	is	very	difficult	to	achieve	when
we	view	data	numerically.	The	following	visualizations	are	the	key	to
uncovering	correlations,	outliers	and	clusters	in	the	data:

Goal:	Increase	product	subscriptions
Question:	Are	there	any	differences	in	the	relationship	between	the	revenue
and	the	Sales	Quantity	by	product	sub-group?
Analysis:	Here	we	will	use	a	scatter	graph	to	plot	product	sales	that	are
grouped	by	product	sub-group



Getting	ready
We	will	make	use	of	the	same	Chapter	2	–	Sales.qvf	application	used	in	the
"Composition"	recipe.



How	to	do	it…
1.	 In	the	application	overview	click	on	the	button	in	the	top	right-hand	corner

in	order	to	create	a	new	sheet	and	then	click	on	the	Create	New	Sheet
button.	Name	this	sheet	Relationships.

2.	 Once	inside	the	newly	created	sheet,	go	to	the	charts	asset	pane	 	and
double-click	on	the	scatter	chart	button	 .

3.	 Add	the	following	measures	(m)	and	dimensions	(d)	in	exactly	the	same
order	as	shown:

(m)	Sum(Sales)

(m)	Sum([Sales	Qty])

(m)		Sum(Margin)

(d)		Product	Sub	Group

In	the	properties	pane,	under	Apperance	|	Colors	and	legend,	switch-off	the
Auto	colors.	Then	select	By	expression	from	the	drop-down	menu.
Finally,	add	the	following	expression	into	the	area	provided	below	the

dropdown	menu:

IF([Product	Line]='Drink',ARGB(100,255,0,0),ARGB(100,0,0,255))	

The	final	visualization	should	resemble	the	following	screenshot:	

	



How	it	works…
Since	the	nature	of	product	sub-group	dimension	is	hierarchical,	we	can	actually
show	two	relationships.	The	first	is	between	the	different	measures	whereas	the
second	looks	at	the	relationships	between	different	product	sub-group	categories
by	coloring	them	seperately.



Comparison
The	bar	graph	is	one	of	the	most	common	data	visualizations.	This	is	because	it
is	simply	the	best	way	of	comparing	the	difference	in	value	across	a	single	item.

Goal:	Increase	product	subscriptions
Question:	Why	does	a	sub	set	of	similar	products	not	respond	as	positively
as	others	in	the	same	market?
Analysis:	Combo	chart



Getting	ready
We	will	make	use	of	the	same	Chapter	2	–	Sales.qvf	application	used	in	the
"Relationships"	recipe.



How	to	do	it…
1.	 From	the	application	overview	click	the	button	in	the	top	right-hand	corner

and	click	the	Create	New	Sheet	button.	Name	this	sheet	Comparison.
2.	 Once	inside	the	newly	created	sheet,	go	to	the	charts	asset	pane	 	and

double	click	the	Combo	chart	button	 .
3.	 Add	Product	Group	as	a	dimension.
4.	 Next	add	Sum	(Sales)	as	the	first	measure.	Label	it	Sales.
5.	 Add	sum	([Sales	Qty])	as	the	second	measure.	Label	it	Sales	Qty.
6.	 For	the	Sales	Qty	measure:

Change	the	default	display-format	for	the	expression	from	Bars	to
Marker
Right	below	the	display	format	options,	there	is	a	dropdown	to	define
the	axis.
Set	the	axis	to	secondary.	Just	below	the	axis	formats	there	is	a
markers	style	dropdown.	Select	the	style	as	Line.

Under	Sorting,	promote	Sales	to	the	top	of	the	list.
The	visualization	should	resemble	the	following	image:	

	



How	it	works…
When	it	comes	to	comparing	the	magnitude	of	change	of	the	values	against	each
other,	you	really	cannot	beat	a	bar	chart.	When	you	need	to	compare	multiple
dimensions	in	the	same	visualization,	a	common	approach	is	to	stack	them	on
top	of	each	other.	This	option	is	available	in	the	properties	of	the	bar	chart
object.

However,	this	removes	the	length	comparison	we	are	so	good	at,	thus	making	the
view	not	as	effective.

The	preceding	method	of	using	symbols	instead	of	additional	bars	still	leaves	a
good	focus	on	the	comparitive	length	to	determine	the	magnitude	of	change.
This	is	also	a	more	efficient	use	of	space	than	creating	separate	visualizations	to
cover	additional	analysis.



See	also
Highlighting	the	performance	measure	in	a	bar	chart



Distribution
Distribution	analysis	takes	a	look	at	how	quantitative	values	are	distributed
along	an	axis,	from	the	lowest	to	the	highest.	The	characteristics	emerge	while
looking	at	the	shape	of	the	data,	such	as	central	tendency,	shape	and	outliers:

Goal:	To	understand,	which	demographics	should	be	focused	on	for	our
marking	approach	for	a	specific	product	group
Question:	The	suitable	age-range	to	target	our	new	marketing	campaign
towards
Analysis:	Use	a	histogram	to	see	a	useful	range	from	the	mean	age



Getting	ready
We	will	make	use	of	the	same	Chapter	2	–	Sales.qvf	application	which	we
have	used	in	the	"Comparison"	recipe.



How	to	do	it…
1.	 In	the	application	overview,	click	on	the	button	in	the	top	right-hand	corner

and	click	on	the	Create	New	Sheet	button.	Name	this	sheet	Distribution.
2.	 Once	inside	the	newly	created	sheet,	go	to	the	charts	asset	pane	 	and

double	click	on	the	bar	chart	button	 .
3.	 In	the	properties	pane	to	the	right	of	your	screen,	click	on	Add	data	and

select	Dimension.

4.	 Click	on	the	 	button	for	the	input	box	of	dimension	and	enter	the
following	pre-calculated	dimension.	Label	the	dimension	as	Age.

=Aggr(Class(Age/19,1),Order)

5.	 Add	the	following	line	as	the	measure	and	label	it	Order	Count.

Count(Order)

6.	 In	the	Properties	panel,	select	Age	under	Sorting	and	check	Sort
numerically.	In	the	dropdown	located	right	below	the	Sort	numerically
check	box,	select	the	order	as	Ascending.

7.	 The	final	distribution	chart	should	look	like	the	following	screenshot:	

	



How	it	works…
Distribution	visualizations	help	you	to	analyze	one	or	two	variables	spread	along
an	axis	starting	from	the	lowest	to	the	highest.	The	shape	of	the	data	will	tell	you
about	characteristics,	such	as	the	central	tendency,	shape	and	outliers.



Structuring	visualizations
As	discussed	in	the	introduction,	when	choosing	visualization	you	should	start
with	knowing	if	you	are	looking	at	a	comparison,	composition,	distribution,	or
relationship.

While	this	helps	in	answering	a	single	question	effectively,	this	is	often	to	fulfill
the	goal	that	you	want	to	see	the	information	from	different	angles.	Structuring
visualizations	to	easily	answer	"the	next	question"	keeps	consistency	in	analysis.

While	in	Qlikview	it	is	common	to	design	a	user	interface	with	more	interaction
than	simply	filtering	the	data,	Qlik	Sense	is	built	with	a	large	focus	on	the
business	user	and	analyst.	This	recipe	involves	little	practical	work	and	instead	it
carries	the	torch	for	the	expert	designers	in	the	product	team	at	Qlik.	Here	is	an
example	of	how	and	why	you	should	make	use	of	a	screen	and	not	just	an	object.



Getting	ready
We	will	make	use	of	the	same	Chapter	2	–	Sales.qvf	application	used	in	the
"Distribution"	recipe.



How	to	do	it…
The	charts	that	were	built	in	the	previous	visualization	category	recipe	are
available	as	master	visualizations	in	the	Chapter	2	–	Sales.qvf	application.	As
mentioned	during	the	introduction,	the	reason	behind	the	structure	of	the
previous	four	recipes	was	to	think	of	the	business	question	first.	If	you	can
answer	someone's	question	about	business	with	each	page	(tab),	you	have	a	book
of	gold.

1.	 From	the	application	overview,	click	the	button	in	the	top	right-hand	corner
in	order	to	create	a	new	sheet.	Name	this	sheet	as	Structuring
Visualization.

2.	 Open	the	master	items	pane.
3.	 Under	visualizations	drag	the	Composition	chart	into	the	top	left-hand

corner:	

Next,	drag	the	Relationship	chart	into	the	top	right-hand	corner:	



Drag	the	Comparison	chart	into	the	bottom	left-hand	corner:	

Finally,	drag	the	Distribution	chart	into	the	bottom	right-hand	corner:	



How	it	works…
Each	of	the	four	preceding	recipes	has	a	question	to	answer	for	a	shared	or
similar	goal.	Placing	complementary	visualizations	near	each	other	is	good	page
design.	Each	chart	adds	context	to	the	others	and	helps	to	build	up	a	clearer
analysis	picture.	The	final	result	should	look	like	the	following	image.	Selecting
a	point	of	interest	in	any	of	the	four	charts	will	show	you	that	the	data	set	from
other	angles	gives	you	a	greater	insight	with	a	single-click.



Chapter	3.	Scripting
In	this	chapter,	we	will	discuss	the	creation	of	optimized	and	well-structured
scripts	for	a	Qlik	Sense	application.	We	are	going	to	cover	the	following	topics:

Structuring	the	script
Efficiently	debugging	the	script
Packaging	the	code	in	script	files
How	to	use	subroutines	in	Qlik	Sense®
Optimizing	the	UI	calculation	speed
Optimizing	the	reload	time	of	the	application
Using	a	For	Each	loop	to	load	data	from	multiple	files
Using	the	Concat	function	to	store	multiple	field	values	in	a	single	cell



Introduction
What	is	a	script	in	Qlik	Sense?	In	lay	man's	language,	a	script	instructs	the	Qlik
Sense	engine	on	how	to	extract	the	data	from	the	data	source	and	what	to	do	with
it.

It	forms	an	essential	component	of	the	ETL	process.	Hence,	it	is	important	to
have	a	well-structured	script	in	order	to	load	the	data	efficiently.	A	good
understanding	of	how	to	optimize	an	ETL	process,	leads	to	a	better	data	model.
A	good	data	model	is	one	of	the	core	components	along	side	well	written
expressions	to	realize	a	good	user	interface	performance.



Structuring	the	script
The	techniques	for	adding	structure	to	the	script	is	something	that	comes
naturally	to	experienced	developers.	This	is	because	they	have	often	learned	it
the	hard	way,	through	other	people's	work	and	spent	additional	time	to
understand	the	script	that	can	be	made	easier	with	a	couple	of	simple	additions.
Again,	this	is	something	that	won't	be	covered	in	user	guides	but	it	is	a	very
important	skill	for	new	developers	to	have	under	their	belt.



Getting	ready
In	this	example,	we	will	generate	the	required	data	automatically	in	the	script.



How	to	do	it…
1.	 Create	a	new	Qlik	Sense	application	and	name	it	Structuring	Scripts.
2.	 Create	a	new	section	in	the	data	load	editor	called	Change	Log.
3.	 Add	the	following	code:

/*	

This	application	demonstrates	the	importance	of	adding	

structure	to	the	back	end	script	of	your	applications	

Change	Log:

[10/06/2015]	Philip	Hand:	Initial	build	

*/

4.	 Create	another	section	called	Calendar	and	add	the	following	script:

/*===========================================================

Section:	Calendar	Tab;

DESCRIPTION:	Generates	every	date	between	the	periods	vMinDate	

&	vMaxDate;

DEVELOPERS:	Philip	Hand,	Neeraj	Kharpate;

//==========================================================*/

TRACE	START:~~~~Loading	Calendar	Tab~~~~;

Let	vMinDate=DATE(Floor(MakeDate(2009,1,1)),'DD/MM/YYYY');

Let	vMaxDate=DATE(Floor(Today()));

TRACE	Calendar	date	range	set	to	$(vMinDate)	&	$(vMaxDate);

Let	vDiff=vMaxDate-vMinDate+1;

Calendar:

Load

DateID,

Year(DateID)																							As	Year,

Month(DateID)																						As	Month,

Date(DateID)																							As	Date,

Day(DateID)																								As	Day,

Week(DateID)																							As	Week;

Load

RecNo()-1+$(vMinDate)														As	DateID

AutoGenerate($(vDiff));

TRACE	END:~~~~Loading	Calendar	Tab~~~~;



5.	 Finally,	save	the	data	and	load	the	script.



How	it	works…
The	first	tab	gives	an	overview	of	the	application	and	calls	out	any	key
information	that	a	new	developer	who	is	seeing	the	script	for	the	first	time	will
find	useful.	It	also	includes	a	change	log	to	track	the	changes.

The	second	tab	has	a	high-level	description	of	the	contained	code	and	the
developers	who	have	worked	on	it.	Finally,	we	can	make	use	of	the	TRACE
statements	to	write	information	into	the	execution	window.	This	allows	you	to
see	each	action	being	performed	during	script	execution	and	is	a	useful	tool	to
debug	errors.



Efficiently	debugging	the	script
It	is	a	good	script	practice	to	debug	the	script	in	your	data	load	editor	before	its
full	execution.	This	way	the	developer	minimizes	the	risk	of	script	failures	and
also	saves	on	valuable	time.	The	process	of	debugging	makes	it	possible	to
monitor	every	script	statement	and	examine	the	variable	values	while	the	script
is	being	executed.	The	following	recipe	explains	how	to	debug	the	Qlik	Sense
script	efficiently.



Getting	ready
Load	the	following	script,	which	gives	information	about	the	Products	and
Customers	in	the	Qlik	Sense	data	load	editor.	The	sample	code	is	available	for
download	from	the	Packt	Publishing	website:

Products	Temp:

LOAD	*	INLINE	[	

Product,	ProductID,	Sales	

Footwear,	F21Lon,	120000

Tyres,	T21Man,	150000	

Mountain	Bikes,	MB32Lon,	195000	

Road	Bikes,	RB12Bir,	225000	

];

Customers:

LOAD	*	INLINE	[	

Customer,	ProductID,	City	

Hero,	F21Lon,	London

Avon,	T21Man,	Manchester	

Force1,	MB32Lon,	London	

Ferrari,	RB12Bir,	Birmingham	

];



How	to	do	it…
1.	 Save	the	preceding	script.
2.	 When	you	save	the	script	Qlik	Sense	automatically	detects	syntax	issues

present	in	the	script,	if	any.	The	syntax	issues	are	highlighted	in	red	as
shown	in	the	following	screenshot.	Also	make	a	note	of	the	 	mark	beside
the	section	name	in	the	Section	panel.	This	indicates	that	there	is	an	issue
with	the	script	on	the	tab.

3.	 Next,	click	on	the	Show	debug	panel	 	button	on	the	top	right	corner.
4.	 A	debug	panel	pops-up	from	the	bottom	of	the	screen	with	3	toggles,

Output,	Variables	and	Breakpoints.
5.	 In	order	to	debug	the	script,	load	only	the	limited	records,	as	this	will	speed

up	the	process	of	debugging.	Keep	in	mind	that	when	you	load	limited
records	from	a	number	of	tables	in	your	Qlik	Sense	script,	there	may	be	no
records	that	associate	the	tables.	However,	you	don't	need	to	worry,	as	the
main	concern	here	is	checking	the	accuracy	of	the	script.	Once	it	is
confirmed,	the	script	will	run	through	without	errors	and	you	may	go	ahead
and	do	a	full	reload.

6.	 Take	a	limited	load	of	10	records	by	ticking	the	box	for	Limited	Load	and
entering	10	in	the	input	box.	Click	on	the	run	 	button.



7.	 On	running	the	debugger,	Qlik	Sense	checks	the	entire	script	line	by	line
and	looks	for	any	errors.	If	the	script	has	an	error,	the	execution	stops	at	that
point	and	the	issue	is	highlighted	in	amber	colored	box,	as	shown.	The	line
at	which	the	execution	has	stopped	is	highlighted	in	red:	

The	output	window	gives	us	the	details	of	the	encountered	error.	Click	on	the
run	 	button	again	to	complete	the	script	execution.	Once	the	script	execution	is
complete,	you	will	notice	that	the	Customers	table	is	loaded	fine	but	the
Products	temp	table	is	not	loaded	at	all.	We	can	verify	the	same	by	checking	the
data	model	viewer.
Check	the	Variables	tab.	The	ScriptErrorCount	variable	gives	the	count	of

errors	and	the	ScriptErrorList	shows	the	type	of	error,	which	in	our	case	is	a



Syntax	Error:	
At	this	point,	the	user	can	remove	the	space	between	the	words	Products	and

temp	in	the	label	for	the	Products	table	to	rectify	the	script	error.
We	can	also	define	breakpoints	in	our	script	by	clicking	on	the	area	besides	the

line	number	in	the	script	window.	The	breakpoints	are	denoted	by	 .
The	script	execution	stops	at	the	breakpoint.
The	breakpoints	can	be	enabled,	disabled,	and	deleted	at	will	by	selecting	and

deselecting	them	under	the	Breakpoints	list	or	by	re-clicking	on	the	 	icon	on
the	number	line.	The	Breakpoints	are	ignored	at	the	blank	lines	and	inside	the
LOAD	statement	in	the	middle	of	the	field	list:	

Alternatively,	the	user	can	step	through	each	statement	of	code	in	the	script	by



clicking	on	the	Step	 	button.



How	it	works…
The	Debug	panel	in	Qlik	Sense	checks	through	the	entire	script	for	errors	and
makes	sure	that	it	is	accurate.	One	major	benefit	of	using	a	debugger	is	that	the
user	can	load	only	a	few	records	into	the	data	model	for	the	test.	The	debugger
also	allows	the	user	to	check	the	output	of	the	executed	script	and	make	sure	that
it	is	as	desired.



There's	more…
The	Debug	panel	also	helps	you	to	identify	issues	related	to	variables	and	fields
in	the	files	defined	under	the	$(include)	statement.	We	can	also	inspect	the
variables	during	the	script	execution.	The	variables	can	be	accessed	by	clicking
on	the	Variables	toggle.	One	can	set	any	of	the	variables	as	favorites	by	clicking
on	the	 	next	to	the	variable.



See	also
Packaging	the	code	in	script	files



Packaging	the	code	in	script	files
Script	files	are	complete	blocks	of	code	that	are	stored	in	external	files	such	as
.qvs	or	.txt	and	they	can	be	included	in	your	application	with	a	single
reference.	They	are	conceptually	similar	to	the	subroutines	that	are	covered	in
another	recipe	in	this	chapter.	However,	there	is	a	subtle	difference	in	the	usage.
QVS	simply	stands	for	QlikView	Script	File.

Everything	from	data	sources,	expressions,	and	visualizations	can	be	governed
centrally	and	the	script	files	can	be	leveraged	in	a	similar	way	to	help	build
standards	in	backend	data	preparation	across	multiple	applications.



Getting	ready
Open	a	new	QlikSense	application	and	create	a	data	connection	into	a	folder
where	you	want	to	store	your	script	files.	As	shown	in	the	following	example



How	to	do	it…
1.	 Open	a	Notepad	document.
2.	 Copy	the	following	subroutine	script	(a	simplified	version	of	the	calendar

code	from	the	previous	recipe)	into	the	Notepad	document:

SUB	Calendar(vMinDate,vMaxDate)

Let	vDiff=vMaxDate-vMinDate+1;	

Calendar:

Load

DateID,

Year(DateID)																							As	Year,

Month(DateID)																						As	Month,

Date(DateID)																							As	Date,

Day(DateID)																								As	Day,

Week(DateID)																							As	Week;

Load

RecNo()-1+$(vMinDate)	As	DateID

AutoGenerate($(vDiff));

END	SUB

3.	 Save	the	Notepad	file	as	Calendar.qvs	into	the	folder	for	which	you
created	the	data	connection.	Remember	to	change	the	Save	as	type	to	All
Files,	as	shown:



	
4.	 Add	the	following	line	of	code	to	your	application:

$(Include=[lib://Scripts/calendar.qvs]);

5.	 You	can	now	call	the	same	subroutine	without	seeing	the	code,	as	in	the
previous	example.	In	order	to	generate	a	calendar,	use	the	following	CALL
statement	in	the	script:

CALL	Calendar(01/01/2010,Floor(Today()))	;



How	it	works…
We	have	replaced	a	page	of	code	with	just	one	line	using	a	script	file.	If	you
have	a	code	that	can	be	packaged	and	reused	across	applications,	it	makes	sense
to	store	this	code	into	a	script	file	for	others	to	use.	Doing	this	reduces	the
complexity	and	keeps	the	focus	of	new	developers	on	the	backend	code	and	on
the	matter	that	is	relevant	to	that	application.

It's	worth	pointing	out	that	you	could	copy	the	code	in	the	preceding	point
directly	into	the	script	editor	and	it	will	still	get	created	and	be	ready	for	use.	We
save	this	code	as	a	QVS	file	so	that	we	can	load	the	code	using	the	$(Include…)
statement.	Loading	the	script	from	external	files	using	the	$(Include…)
statement	is	a	good	method	of	reusing	blocks	of	script	across	applications	or
using	them	for	source	control.



See	also
How	to	use	sub	routines	in	Qlik	Sense®



How	to	use	sub	routines	in	Qlik
Sense®
At	times,	it	is	mandatory	to	use	the	same	set	of	code	at	different	places	in	the
script.	To	achieve	this,	developers	will	sometimes	use	a	copy	and	paste
approach.	However,	this	makes	it	difficult	to	maintain	and	read	the	script.	It	is
always	advised	to	create	subroutines	and	then	simply	call	them	as	and	when
needed.

In	the	following	recipe,	we	use	subroutines	to	create	QVDs	and	store	them	in	a
specific	folder.	We	also	generate	fields	using	various	functions	within	the
subroutines,	which	also	helps	in	auditing	the	QVD	files.



Getting	ready
1.	 This	recipe	makes	use	of	certain	functions	such	as	QVDTablename,

QVDNoOfFields	and	QVDNoOfRecords,	which	don't	work	in	normal	script
mode	in	Qlik	Sense.	Hence,	we	need	to	activate	the	legacy	mode	by
following	the	steps	given	in	the	recipe	titled	How	to	activate	Legacy	mode
in	Qlik	sense	in	Chapter	1,	Getting	Started	with	the	Data.

2.	 Once	the	legacy	mode	is	activated,	open	Qlik	Sense	desktop	and	create	a
new	application	called	Subroutines	in	Qlik	Sense.

3.	 Create	a	folder	called	QVD	at	a	desired	location	on	the	hard	drive.	For	the
sake	of	this	recipe,	we	are	creating	the	QVD	folder	at	the	following	location:

C:\Qliksense	cookbook\Chapters\3\QVD

This	folder	will	store	the	QVDs	generated	in	the	subroutines.



How	to	do	it…
1.	 Open	the	data	load	editor.
2.	 Create	a	new	data	connection	called	as	QVDFolder.	This	data	connection

should	create	a	folder	connection	to	the	QVD	folder	created	in	step	1.
3.	 In	the	data	load	editor,	create	a	new	section	Variable	Setting,	and	add	the

following	code	to	it:

LET	vFileName	=	subfield(DocumentName(),'.',1);

SET	vTable1	=1;	//Product

SET	vTable2	=1;	//Customer

LET	vQVD='C:\Qliksense	cookbook\Chapters\3';

4.	 Create	a	new	Section	Data,	and	add	the	following	code	to	it:

SUB	Create_T_Product

		$(vTable):

		LOAD	*	INLINE	[	

		Product,	ProductID,	Sales	

		Footwear,	F21Lon,	120000

		Tyres,	T21Man,	150000	

		Mountain	Bikes,	MB32Lon,	195000	

		Road	Bikes,	RB12Bir,	225000	

];

END	SUB

SUB	Create_T_Customer

		$(vTable):

		LOAD	*	INLINE	[	

		Customer,	ProductID,	City	

		Hero,	F21Lon,	London

		Avon,	T21Man,	Manchester	

		Force1,	MB32Lon,	London	

		Ferrari,	RB12Bir,	Birmingham	

];

END	SUB

5.	 Create	a	new	section	called	Store_Drop	and	add	the	following	code	to	it:

SUB	Create_QVD_Standard(vTable,vSub)



		LET	vQVDStartTime	=	num(now());

		CALL	$(vSub)

		STORE	'$(vTable)'	INTO	$(vQVD)\QVD\$(vTable).qvd(qvd);

		DROP	TABLE	$(vTable);

		LET	vFieldType	=	'QVD_Standard';

		LET	vQVDEndTime	=	num(now());

		LET	vQVDTimeTaken	=	$(vQVDEndTime)	-	$(vQVDStartTime);

		LET	vTableFullPath	=	DocumentPath();

		TablesLoaded:

		LOAD

		QVDTableName('$(vQVD)\QVD\$(vTable).qvd')	AS	[STDQVD	Name],

		Timestamp($(vQVDStartTime),'DD	MMM	YY	hh:mm')	AS	[STDQVD	

Start	Time],

		Timestamp($(vQVDEndTime),'DD	MMM	YY	hh:mm')	AS	[STDQVD	End	

Time],

		Interval($(vQVDTimeTaken),'hh	mm	ss')	AS	[STDQVD	Time	Taken	

(hh	mm	ss)],

		QVDNoOfFields('$(vQVD)\QVD\$(vTable).qvd')	AS	[STDQVD	No	of	

Fields],

		QVDNoOfRecords('$(vQVD)\QVD\$(vTable).qvd')AS	[STDQVD	No	of	

Records]

		AUTOGENERATE	(1);

END	SUB

6.	 Create	a	new	section	called	Create	qvd	and	add	the	following	code	to	it:

LET	vRunStart	=	timestamp(now(),'DD	MMM	YYYY	hh:mm:ss');

If	$(vTable1)	=	1	Then

CALL	Create_QVD_Standard('T_Product','Create_T_Product')

ENDIF;

If	$(vTable2)	=	1	Then

CALL	Create_QVD_Standard('T_Customer','Create_T_Customer')

ENDIF;

LET	vRunFinish	=	timestamp(now(),'DD	MMM	YYYY	hh:mm:ss');

LET	vRunTime	=	Interval(num(timestamp#('$(vRunFinish)','DD	MMM	



YY	hh:mm:ss'))

-num(timestamp#('$(vRunStart)','DD	MMM	YY	

hh:mm:ss')),'hh:mm:ss');

7.	 Save	and	reload	the	document.
8.	 On	the	front	end,	click	on	edit	at	the	top	right	hand	corner	and	create	a	new

Table	object	by	dragging	it	across	the	sheet	from	the	left	hand	side	panel.
9.	 Add	all	the	available	dimensions	in	the	table	to	get	the	following	output:

	



How	it	works…
The	first	two	subroutines	named	SUB	Create_T_Product	and	SUB
Create_T_Customer	create	the	tables	called	Product	and	Customer	and	then
store	the	data	in	these	tables.

The	third	subroutine	SUB	Create_QVD_Standard(vTable,vSub)	passes	the
values	of	the	respective	table	names	and	the	subroutines.	Within	this	sub	routine
we	also	create	a	number	of	fields	using	the	load	script	functions,	which	are	used
for	our	QVD	audit	purposes.

Further,	the	CALL	statements	call	the	subroutines	and	create	QVDs	to	store	them
in	specified	folders.

Along	with	creating	and	storing	the	QVDs,	we	also	get	valuable	information,
such	as	the	number	of	fields	in	each	QVD,	the	time	it	takes	to	create	the	QVDs,
and	so	on.	It	is	especially	helpful	while	loading	a	large	dataset.



There's	more…
The	subroutines	can	be	stored	in	an	external	file	and	further	used	in	the	script
using	an	include	statement.



See	also
Packaging	the	code	in	script	files



Optimizing	the	UI	calculation	speed
The	following	recipe	discusses	the	creation	of	Flags	in	the	script	and	the	use	of
these	flags	in	the	Chart	expressions	to	optimize	the	calculation	speeds.

A	flag	can	be	described	as	a	binary	status	indicator	that	is	used	to	indicate	certain
states	of	data.	For	example,	creating	a	new	field	in	the	table	called	MonthToDate
Flag.	This	field	can	be	used	to	flag	records	with	the	number	1	if	the	record	was
created	in	the	last	month,	else	we	mark	the	record	with	a	0.

Using	this	approach,	we	can	now	count	the	number	of	records	in	the	table	that
were	created	in	the	last	month	using	the	expression	SUM([Month	To	Date
Flag]).

A	flag	is	often	used	to	code	complex	decision	logic	into	the	load	script	so	that
the	binary	"yes"	or	"no"	decisions	can	be	quickly	identified	from	the
calculations.



Getting	ready
For	this	recipe	we	will	generate	a	sales	data	in	the	script	as	defined	in	the
following	script.	Load	the	following	script	into	the	data	load	editor:

Calendar:

Load

				DateID,

				RowNo()																																			AS	ID,

				Year(DateID)																														As	Year,

				Year(DateID)&''&NUM(Month(DateID),'00')			AS	YearMonth,

				Month(DateID)																													As	Month,

				Date(DateID)																														As	Date,

				Day(DateID)																															As	Day,

				Week(DateID)																														As	Week,

				Floor(2000	*	rand())																						AS	Sales;

Load

RecNo()-1+makedate(2014)	As	DateID

AutoGenerate(730);



How	to	do	it…
1.	 In	the	preceding	Load	statement,	add	the	following	line	of	code	just	below

the	DateID	field:

if(Year(DateID)=2015,1,0)	AS	YearFlag_2015,

2.	 Reload	the	script.
3.	 Create	a	line	chart	with	YearMonth	as	the	dimension.
4.	 Add	the	following	measure	and	label	it	as	Sales:

sum({<YearFlag_2015={1}>}Sales)

5.	 Make	sure	that	the	sort-order	for	the	months	is	maintained	as	Numeric	and
Ascending	for	the	field	YearMonth.

6.	 The	graph	should	look	like	the	following:

	



How	it	works…
The	flag	field	that	we	set	up	simply	adds	an	indicator	against	the	records	that	fall
within	the	rules	we	established.	Now	that	we	have	identified	the	records	from
2015,	we	can	use	this	flag	in	the	expression	to	calculate	across	those	records.

The	real	world	difference	between	using	a	flag	to	identify	the	records	in	2015
and	just	using	set	analysis	to	identify	the	record	directly	will	be	almost	nothing.
The	preceding	code	is	a	very	simplified	example	of	turning	business	logic	into	a
flag	indicator	to	be	used	later	on.	Once	you	have	a	grip	on	the	concept	and
implementation,	the	same	method	can	be	used	to	add	a	level	of	complex	and
detailed	business	logic	to	a	binary	yes	or	no	flag.	Instead	of	writing	the	complex
If-then-Else	logic	in	the	chart	expressions,	it	is	always	advised	to	move	it	to
the	back	end	script	and	create	flags.	The	flags	are	then	used	in	the	front	end
expressions	thus	making	them	more	efficient.

Adding	as	much	of	the	business	logic	to	the	script	as	possible	makes	everything
much	quicker	and	simpler	to	read.	This	way	you	don't	have	to	look	at	each	chart
before	making	a	change,	you	can	make	it	in	one	place	only	and	the	change	will
propagate	through	the	whole	application.



Optimizing	the	reload	time	of	the
application
There	are	two	methods	of	loading	data	from	QVDs:	optimized	and	non-
optimized.	The	key	point	here	is	that	the	optimized	loads	can	be	up	to	100	times
quicker	than	the	non-optimized	loads.

This	speed	increase	is	a	result	of	the	data	passing	directly	from	the	disk	(QVD)
into	the	memory	(RAM)	without	being	unpacked	from	its	compressed	QVD
format.

As	you	may	have	guessed	the	reason	every	load	is	not	optimized	is	because	we
often	want	to	change	the	data	coming	out	of	the	QVD.	This	requires	it	to	be
uncompressed	before	going	into	memory;	hence,	it	is	significantly	slower.	Just
about	any	change	to	the	data	will	cause	the	load	to	be	non-optimized;	however,
there	are	a	few	things	that	we	can	do.



Getting	ready
1.	 Open	a	new	QlikSense	application	and	go	straight	to	the	data	load	editor.
2.	 Create	a	folder	library	connection	to	any	location	where	you	want	to	save

example	data	files	and	call	that	connection	QVDs.



How	to	do	it…
1.	 Copy	the	following	code	into	the	data	load	editor.	Please	note	that	if	you	are

using	a	very	low	spec	machine	you	can	reduce	the	20	million	number	on	the
third	line	to	something	smaller	like	1	million:

ExampleData:

Load	RecNo()	AS	TransID

Autogenerate	20000000;	

Store	ExampleData	into	[lib://QVDs/Data1.qvd](qvd);

Drop	Table	ExampleData;

OptimizedLoad:

LOAD

TransID

FROM	[lib://QVDs/Data1.qvd](qvd);

Store	OptimizedLoad	Into	[lib://QVDs/Data2.qvd](qvd);

Drop	Table	OptimizedLoad;

UnoptimizedLoad:

LOAD

				'Example	Text'	AS	NewField,	

				TransID

FROM	[lib://QVDs/Data2.qvd](qvd)	

Where	Not	IsNull(TransID);

2.	 Reload	the	application	and	make	a	note	of	the	time	it	takes	to	load	the
records	in	each	table:



	



How	it	works…
The	first	20	million	records	loaded	are	simply	auto-generated	data	records	that
we	store	in	a	Data1.qvd	file	to	use	later	on.	Now,	we	have	a	QVD	available	to
read	from,	which	we	can	use	to	demonstrate	the	difference	between	an	optimized
load	and	an	un-optimized	load.	As	a	rule	of	thumb	any	data	transformations	on
the	QVD	data	in	the	script	will	cause	the	load	to	be	un-optimized.

The	second	load	of	20	million	records	simply	reads	the	data	from	the	Data1.qvd
file	(created	in	the	preceding	step)	directly	into	memory	and	no	further
transformations	take	place.	As	no	transformations	take	place	in	the	Load
statement,	the	load	is	an	optimized	load	as	stated	in	the	Data	progress	window.
We	store	the	data	loaded	from	this	step	into	another	QVD	file	called	as
Data2.qvd.

The	third	load	is	from	the	Data2.qvd	file,	the	difference	being	that	this	time	the
script	adds	a	Where	clause	and	a	new	calculated	field.	Either	of	these
transformations	will	cause	Qlik	Sense	to	use	the	unoptimized	load	method.
Notice	that	the	Data	progress	window	does	not	specify	"optimized	load"	even
though	we	are	loading	the	data	from	a	QVD	file.

You	can	think	of	optimized	versus	un-optimized	loads	as	data	being	directly
loaded	into	RAM	for	reading	versus	the	unpacked	data	that	is	read	line	by	line.	A
good	exception	to	a	Where	clause	that	breaks	the	optimization	rule	is	the
Exists()	function.	Using	Where	Exists(<Field>)	at	the	end	of	a	load	is	a	good
method	of	loading	the	data	that's	relevant	to	what	has	been	loaded	previously.



Using	a	For	Each	loop	to	load	data
from	multiple	files
Often	in	a	Qlik	Sense	application	we	need	to	load	data	from	a	directory	which
contains	an	identical	set	of	data	files.	For	example;	sales	for	each	country	come
in	different	files	for	each	month.	In	such	a	case,	we	use	a	wildcard	load,	in	order
to	fetch	the	data	for	our	application.	The	following	recipe	discusses	the	data
modeling	issues	encountered	when	using	the	wildcard	load	and	how	we	make
use	of	the	For	each	loop	structure	in	the	script	to	overcome	this	issue.



Getting	ready
For	this	exercise	we	will	make	use	of	two	sample	XLSX	files,	namely,
Apr2015.xlsx	and	May2015.xlsx	that	contain	mock	sales	data	for	six	countries.
These	files	can	be	downloaded	from	the	Packt	Publishing	website.



How	to	do	it…
1.	 Once	the	source	files	are	downloaded,	store	them	in	a	folder	called

ForEachLoadData.
2.	 Create	a	folder	connection	as	explained	in	Chapter	1,	Getting	Started	with
the	Data	that	points	to	the	ForEachLoadData	folder.	Name	the	connection
as	QlikSenseCookBookForEachLoadData.

3.	 Select	any	file	from	the	folder	and	extract	its	contents	in	the	Qlik	Sense
application.

4.	 Next	modify	the	script	as	the	following	example,	to	get	the	data	from	all
files	that	reside	in	the	ForEachLoadData	folder.	Note	that	we	are	using	a
wildcard	*	in	place	of	the	filename	in	the	from	statement.	The
Filebasename()	function	gets	the	filename	so	that	we	can	identify	the
origin	of	the	data:

CountrySales:

		Load

		Filebasename	()	AS	Source,Country,	Sales

FROM	[lib://QlikSenseCookBookForEachLoadData/*.xlsx]

(ooxml,	embedded	labels,	table	is	Sheet1);

5.	 Add	the	preceding	load	to	the	script.	(the	preceding	Load	is	placed	directly
above	the	Load	statement	of	the	CountrySales	table.):

LOAD*,

				Left(Source,3)	as	Month;

6.	 Upon	loading,	we	observe	that	a	synthetic	key	has	been	created	in	the	data
model.

7.	 In	order	to	avoid	the	synthetic	key,	we	will	make	use	of	the	For	each	loop
along	with	the	wildcard	load.

8.	 Modify	the	block	of	code	to	start	with	a	For	Each	loop	statement	and	end
with	a	Next,	as	shown	in	the	following	code.

For	each	vFile	in	FileList	

('lib://QlikSenseCookBookForEachLoadData/*.xlsx')

			CountrySales:

			LOAD	*,Left(Source,3)	as	Month;

			Load	

			Country,

			Sales,



			Filebasename()	as	Source

			from	[$(vFile)]

			(ooxml,	embedded	labels,	table	is	Sheet1);

Next	vFile

9.	 Once	the	script	is	in	place,	save	and	reload	the	application	again.
10.	 We	observe	that	all	the	files	from	the	folder	have	been	reloaded	properly

and	there	is	no	synthetic	key	in	the	data	model.



How	it	works…
The	*	wildcard	character	loads	all	the	files	from	the	ForEachLoadData	folder
into	the	Qlik	Sense	application.	When	we	use	a	preceding	load	statement	to
generate	the	Month	field,	the	load	is	only	applied	to	the	first	file	loaded	from	the
folder;	hence,	the	Month	field	is	created	only	for	the	first	file.	This	is	the	reason
why	a	synthetic	key	is	created	between	the	two	tables.

When	we	use	the	For	loop,	every	file	is	sequentially	loaded	from	the	source
folder	and	then	a	preceding	load	is	applied;	thus,	creating	a	month	field	in	each
created	table.	The	two	tables	are	then	auto-concatenated,	as	they	contain	the
same	number	of	fields	with	the	same	name.	As	a	result,	a	synthetic	key	is
avoided	and	we	get	a	clean	data	model.



There's	more…
We	used	iteration	or	the	For	Each	loop	in	the	above	recipe	outside	the	Load
statement.	We	can	also	have	iterations	inside	the	Load	statement	using	the	Where
clause	or	the	Subfield	function.	Iterations	are	also	possible	using	the	Peek()
function.	A	useful	article	from	Henric	Cronstrom	on	Iterations	can	be	accessed
using	the	following	URL:
https://community.qlik.com/blogs/qlikviewdesignblog/2013/09/02/loops-in-the-
script

https://community.qlik.com/blogs/qlikviewdesignblog/2013/09/02/loops-in-the-script


Using	the	Concat	function	to	store
multiple	field	values	in	a	single	cell
The	information	in	orders	and	invoices	is	typically	stored	at	the	header	or	line
level	in	the	database.	However,	when	we	display	the	sales	value	for	a	particular
order	on	the	UI,	it	is	sometimes	desired	that	all	the	products	for	an	order	are
displayed	in	a	single	cell	rather	than	on	a	separate	line.	The	Concat	function	is
helpful	in	such	a	case.



Getting	ready
For	this	recipe	we	will	make	use	of	an	inline	data	load	which	gives	sales
information	for	orders.	Load	the	following	order	line	information	in	Qlik	Sense:

Orders:

LOAD	*	INLINE	[	

OrderID,Product,	ProductID,	Sales	

101,Footwear,	F21Lon,	120000

101,Tyres,	T21Man,	150000	

101,Mountain	Bikes,	MB32Lon,	195000	

102,Road	Bikes,	RB12Bir,	225000	

102,Chains,	F21Lon,	140000

103,lubricant,	T21Man,	56869	

103,Mountain	Bikes,	MB32Lon,	195000	

104,Road	Bikes,	RB12Bir,	65233

];

LEFT	JOIN

LOAD	OrderID,	CONCAT(Product,',')	as	Products

Resident

Orders

GROUP	BY	OrderID;



How	to	do	it…
1.	 Create	a	Table	Chart.
2.	 Add	OrderID	as	the	first	dimension.
3.	 Add	Products	as	the	second	dimension.
4.	 Add	Sum(Sales)	as	the	measure.	Label	it	Sales.
5.	 The	resultant	table	should	look	like	the	following:



How	it	works…
The	CONCAT	function	in	the	script	is	used	to	string	together	multiple	product
values	in	one	single	string	separated	by	a	specified	delimiter.	The	CONCAT
function	is	an	aggregation	function	and	would	require	a	Group	By	clause	after
the	from	statement.



There's	more…
The	CONCAT	function	can	also	be	used	in	the	frontend	instead	of	the	script.	In	this
case,	we	will	have	to	create	a	calculated	dimension,	as	follows:

=AGGR(Concat(DISTINCT	Product,','),OrderID)

Name	it	as	Products.	As	mentioned	earlier,	being	an	aggregation	function,
CONCAT	requires	an	AGGR	that	is	a	substitute	of	Group	By	used	in	the	script.



See	also
The	Chapter	5,	Useful	Functions	chapter	discusses	some	cool	utilization	of
functions	within	Qlik	Sense.



Chapter	4.	Managing	Apps	and	User
Interface
In	this	chapter,	we	will	be	dealing	with	the	User	Interface	in	Qlik	Sense.

Publishing	a	Qlik	Sense®	application	on	Qlik	Sense®	desktop
Creating	private,	approved	and	community	sheets
Publishing	a	Qlik	Sense®	application	on	Qlik	Sense®	cloud
Creating	geo	maps	in	Qlik	Sense®

Effectively	using	the	KPI	object	in	Qlik	Sense®
Creating	Tree	Maps
Creating	a	Sales	versus	Target	gauge	chart	in	Qlik	Sense®

Creating	dimensionless	bar	charts	in	Qlik	Sense®
Adding	Reference	Lines	to	trendline	charts
Creating	text	and	images
Applying	limitations	to	charts
Adding	thumbnails	–	a	clear	environment
Navigating	many	data	points	in	a	scatter	chart



Introduction
The	information	required	for	analysis	and	decision	making	within	an
organization	is	communicated	via	the	user	interface	in	Qlik	Sense.	We	discussed
the	best	design	practices	in	Chapter	2,	Visualization.	We	will	take	this	discussion
a	step	further	and	learn	to	implement	a	few	key	objects	found	in	Qlik	Sense	in
our	applications,	which	will	help	the	business	convey	the	desired	information	to
the	end	user	in	an	effective	manner.	The	chapter	starts	with	important	concepts
in	managing	the	Qlik	Sense	applications,	such	as	publishing	the	apps	on	the
server	and	on	the	Qlik	Sense	cloud.	In	later	parts,	the	chapter	deals	with	topics
such	as	"Use	of	Reference	Lines"	and	"Navigating	Data	Points	in	Scatter	Chart"
in	a	Qlik	Sense	application.



Publishing	a	Qlik	Sense®	application
created	in	Qlik	Sense®	desktop
The	licensing	model	of	Qlik	would	not	be	very	useful	if	everyone	used	Qlik
Sense	desktop	only	for	themselves.	In	a	published	BI	environment,	simply
creating	an	application	in	Qlik	Sense	Desktop	will	not	suffice.	It	has	to	be	made
available	to	the	end	user.	The	application	needs	to	be	published	via	the	Qlik
Sense	management	console.



Getting	ready
Install	Qlik	Sense	Server	2.1.1.	The	steps	to	install	the	Sense	Server	can	be
found	under	the	Deploy	section	in	the	left	panel	on	the	Qlik	Sense	help	website:

https://help.qlik.com/sense/2.1/

The	Qlik	Sense	Installer	file	can	be	obtained	from	www.qlik.com.	You	need	to
login	using	the	customer	account	credentials	to	get	access	to	the	files	under
Support	|	Customer	Downloads.

https://help.qlik.com/sense/2.1/
http://www.qlik.com


How	to	do	it…
Any	Qlik	Sense	application	that	is	created	in	Qlik	Sense	desktop	needs	to	be
imported	using	the	Qlik	Sense	management	console	prior	to	its	publishing.

1.	 To	do	this,	open	the	Qlik	Sense	QMC	through	the	windows	shortcut	or	use
the	following	URL:

https://<Qlik	Sense	Server	Hostname>/QMC

In	the	QMC,	click	on	Apps	in	the	left	pane	and	go	to	the	Apps	section.
Click	on	the	Import	button	in	the	top	right	hand	corner.
Click	on	Choose	File	and	select	the	required	application	to	be	uploaded	and

press	Import.	Once	imported,	select	the	app	and	click	Publish	in	the	action	bar.
You	will	be	prompted	to	specify	a	stream	for	the	application.	Choose	a	stream

from	the	defined	streams	in	the	dropdown	menu.



How	it	works…
Publishing	an	application	is	the	first	step	towards	sharing	the	application	with	a
wider	set	of	end	users.	Once	published	the	layout	of	the	application	cannot	be
changed.	Also,	the	publishing	of	the	application	cannot	be	undone	and	you	will
have	to	delete	the	application	to	remove	it	from	the	stream.	A	better	approach	to
handle	such	a	situation	is	to	duplicate	the	application	without	publishing	it	and
make	the	desired	changes	to	the	duplicate	application.	We	can	then	use	the
option	of	Replace	existing	app	to	replace	a	published	app.



There's	more…
Sheets	and	bookmarks	can	be	published	and	categorized	as	private,	approved,	or
community.	This	will	be	discussed	in	the	next	recipe.



Creating	private,	approved,	and
community	sheets
Sheets	are	the	key	components	of	a	Qlik	Sense	application.	They	contain	all	the
objects	that	carry	information	and	provide	framework	for	analysis.	There	are
three	types	of	sheet	that	can	be	defined	in	a	Qlik	Sense	application.	These	are	the
private,	approved,	and	community	sheets.

Approved	sheets	are	all	sheets	that	are	defined	by	the	author	of	the
application.	These	cannot	be	changed	by	the	user	and	are	defined	as	read
only.
Private	sheets	can	be	viewed	only	by	the	author	of	the	application.	These
are	not	yet	published	for	access	by	the	end	user.
Community	sheets	are	also	private	sheets	but	are	defined	and	published	by
a	user	other	than	the	author	who	has	been	granted	access	to	the	application
on	the	hub.



Getting	ready
Sheets	can	be	defined	as	private,	approved	or	community	once	the	application
has	been	imported	to	the	Qlik	Sense	Management	Console	to	be	published	and
made	available	to	the	end	users.



How	to	do	it…
1.	 Once	the	application	is	published,	all	the	sheets	in	the	application	become

"Approved"	sheets;	approved	sheets	are	read	only.
2.	 The	"Approved"	Sheet	cannot	be	modified	unless	duplicated	as	a	"Private"

sheet.	As	the	name	suggests,	Private	sheets	are	private	to	the	author.	In
order	to	duplicate	a	sheet,	right	click	on	the	sheet	and	select	Duplicate
Sheet	option.

3.	 Once	the	Sheet	is	made	"Private",	modifications	can	be	made	to	the	relevant
sheet	if	required.	The	sheet	can	then	be	published	by	right	clicking	and
selecting	Publish	Sheet.

4.	 "Private"	sheets	can	also	be	created	by	"Creating	a	new	Sheet"	in	the
published	application.

5.	 Sheets	can	be	created	by	other	users	and	published	to	the	hub.	Sheets
published	in	such	a	way	are	categorized	as	"Community"	sheets.



How	it	works…
Only	the	published	sheets	can	be	accessed	by	the	end	users.	Sheets	kept	as
private	or	approved	are	not	shared	until	published;	hence,	they	add	a	layer	of
security.	The	concept	of	community	sheets	brings	in	the	collaborative	feature,
wherein	the	other	users	can	contribute	and	share	objects	and	reports	created	by
them.



There's	more…
On	a	similar	note,	one	can	create	private,	approved,	and	community	bookmarks
in	Qlik	Sense.	The	idea	and	approach	remain	similar.



See	also
Publishing	a	Qlik	Sense®	application	created	in	Qlik	Sense®	desktop



Publishing	a	Qlik	Sense®	application
to	Qlik	Sense®	cloud
Qlik	has	come	up	with	this	wonderful	concept	of	sharing	Qlik	Sense	applications
in	the	cloud.	The	author	can	share	applications	on	the	cloud	with	up	to	five
people	by	sending	an	e-mail	invitation.	These	applications	can	be	viewed	on	any
mobile	device	and	on	any	web	browser.	In	a	small	implementation,	Qlik	Sense
cloud	can	be	particularly	helpful	as	one	can	share	the	applications	over	the	web
without	installing	the	Sense	Server.



Getting	ready
Create	a	Qlik	Sense	Cloud	account	at	https://qlikcloud.com/login.

https://qlikcloud.com/login


How	to	do	it…
1.	 The	Qlik	Sense	Cloud	web	page	appears	like	the	following	screenshot:	

UnderMy	personal	cloud,	Click	on	the	 	button	to	import	the	desired
Qlik	Sense	application	to	the	cloud:	



Under	Upload	an	app,	click	on	the	Choose	file	button	to	select	the	Qlik	Sense
application.	The	Qlik	Sense	applications	are	by	default	stored	under:

'C:\Users\<\*your	own	user	folder*>\Documents\Qlik\Sense\Apps'

Select	the	desired	application	and	click	on	the	Import	button.
At	this	stage,	the	application	can	be	published	to	the	shared	stream	by

checking	the	Publish	this	app	to	my	shared	stream	check	box.
If	the	application	is	not	published	to	the	shared	stream,	it	will	appear	in	the

Personal	cloud	on	successful	upload.
If	the	application	is	published	on	the	shared	stream,	it	will	appear	in	the	My

Shared	Cloud	on	a	successful	upload.
Click	on	My	Shared	Cloud.	Here	you	will	find	the	recently	uploaded	Qlik

Sense	applications.

Click	on	the	 	button	at	the	bottom	of	the	window	and	the	following



window	will	pop	up:	
Enter	the	e-mail	address	of	the	recipient.	The	recipient	will	receive	an	e-mail

with	a	link	to	create	a	Qlik	Cloud	account.
One	can	open	Qlik	Cloud	while	working	on	the	Sense	Desktop	version	by

right-clicking	on	any	application	and	clicking	on	Upload	to	Qlik	Cloud.
However,	this	link	does	not	actually	upload	the	document	to	the	cloud,	it	only
opens	the	Qlik	Sense	cloud	with	the	correct	dialog:	



How	it	works…
The	applications	that	are	published	to	the	cloud	can	be	viewed	by	any	recipient
who	has	been	provided	with	the	shared	link.	Once	the	recipient	registers	on	Qlik
Sense,	the	author	of	the	application	will	receive	a	notification	that	he	has	a	new
follower.

As	the	information	is	shared	with	different	users	within	the	organization	and
outside,	it	provides	the	user	with	a	great	collaboration	feature.	Any	application	in
the	My	Shared	Cloud	area	is	considered	to	be	shared	and	can	be	seen	by	all
followers.	It	is	not	possible	to	share	only	one	application	with	a	particular	user.
The	applications	can	be	unpublished	and	can	be	moved	to	the	personal	cloud	by
right	clicking	and	selecting	the	Unpublish	option.	As	of	now,	there	are	certain
restrictions	in	using	the	cloud:

The	maximum	size	of	the	application	to	be	uploaded	can	be	25	MB.
Images	and	extensions	cannot	be	uploaded	to	the	cloud.
While	creating	new	applications	directly	in	the	cloud,	we	can	load	data	only

through	the	files	uploaded	to	the	 	section	or	through
DataMarket.
The	followers	are	not	notified	if	a	new	application	is	published	to	the
shared	stream.
The	applications	on	the	cloud	can	be	shared	with	a	maximum	of	five
followers.



There's	more…
Qlik	Cloud	has	the	functionality	of	a	personal	cloud	wherein	the	author	can	have
his	or	her	own	private	applications,	which	are	not	published	to	the	outside
recipients.

Personal	data	files	can	be	added	under	the	 	option.	Once
the	files	are	added	under	personal	data,	they	can	be	used	to	create	a	new	Qlik
Sense	application	in	the	cloud.	The	process	to	create	a	new	Qlik	Sense
application	directly	in	the	cloud	is	as	follows:

1.	 Select	My	Personal	cloud	and	then	click	on	the	 	button.
2.	 Add	a	title	to	the	new	application.

3.	 Click	on	 .	This	will	open	the	Qlik	Sense	application	in	a
browser.

4.	 Open	the	data	load	editor	to	enter	the	script.	If	personal	data	files	are
uploaded	on	the	cloud,	you	will	notice	that	a	data	connection	to	these	files
is	automatically	created	within	the	data	load	editor.

5.	 One	can	also	make	use	of	DataMarket	to	upload	data	to	the	application.
6.	 Add	the	required	data	to	the	script	and	reload	the	application.



Creating	geo	maps	in	Qlik	Sense®
Geographical	information	can	be	plotted	in	Qlik	Sense	by	making	use	of	the
Map	object.	In	order	to	create	geo	maps	in	Qlik	Sense,	we	need	to	load	the
location	information	also	called	point	or	area	data.	The	location	information	can
be	loaded	either	from	a	Keyhole	Markup	Language	(KML)	file,	if	available,	or
a	database,	web	service,	or	from	a	simple	Excel	file.	Data	can	also	be	loaded
inline,	which	is	what	we	are	going	to	do	in	our	following	recipe.



Getting	ready
For	the	purpose	of	this	recipe,	we	will	make	use	of	an	inline	data	load	which
gives	us	the	location	information	for	different	countries	in	the	form	of	latitudes
and	longitudes:

1.	 Create	a	new	Qlik	Sense	file	and	name	it	Geolocations.
2.	 Add	the	following	Inline	table	that	contains	the	location	information	for

countries:

Country:

Load	RowNo()	As	CountryID,	*,GeoMakePoint(Latitude,	Longitude)	

As	CountryGeoPoint	Inline	[

				Country,	Latitude,	Longitude

				Australia,	-25.274398,133.775136

				Argentina,	-38.416097,-63.616672

				India,	20.593684,78.962880

				China,	35.861660,104.195397

				Colombia,	4.570868,-74.297333				Great	

Britain,55.378051,-3.435973

				Switzerland	,46.8181887,8.227512

				Netherlands,52.132633,5.291266

				Salvador,13.794185,-88.896530

				Italy,41.871940,12.567380

				Peru,-9.189967,-75.015152

];

Next,	add	the	following	Inline	table	that	contains	the	Sales	information	for
each	country:

Sales:

Load	*	Inline	[

				Country,	Region,	Sales

				Australia,Australia,133775

				Argentina,	Latam,6361672

				India,	APAC,7896880

				China,	APAC,10419397

				Colombia,	Latam,742333

				Great	Britain,EMEA,3590073

				Switzerland	,EMEA,8227512

				Netherlands,EMEA,521266

				Salvador,Latam,8886530

				Italy,EMEA,12567807

				Peru,Latam,750152

];



Load	the	data	and	save	the	file.	Open	the	App	overview	by	clicking	on	the

Navigation	dropdown	 	in	the	top	left	corner.



How	to	do	it…
1.	 Create	a	new	sheet	in	the	Qlik	Sense	application.
2.	 Enter	the	Edit	sheet	mode	and	drag	across	the	Map	object	from	the	left-

hand	side	Assets	panel	on	to	the	sheet.	Name	it	Sales	by	Country.
3.	 Click	on	Add	Dimension	and	then	select	CountryGeoPoint.	Select

Country	to	represent	the	point	name:	

In	the	Properties	panel	to	the	right	of	your	screen,	add	Sum(Sales)	as	your
expression	under	data.
The	resulting	map	on	the	screen	will	look	like	the	following.	The	map

automatically	picks	up	the	Mapbox	background	in	its	point	layer.	The	only
available	image	type	is	slippy	map:	



Next,	we	will	change	the	background	of	the	map.
To	do	this,	open	the	Properties	panel	and	click	on	Background.	The

Background	windows	Show	property	is	by	default	set	to	On.	The	URL	and
Attribution	boxes	get	activated	when	you	switch	the	Map	service	from	Auto	to
Custom.
Click	on	the	URLs	and	attributions	hyperlink	at	the	bottom	of	the



Background	window:	
From	the	available	list	of	slippy	map	servers,	copy	a	URL	and	paste	it	into	the

URL	text	field.
Next,	copy	the	attribution	string	for	the	chosen	URL	and	paste	the	string	into

the	Attribution	text-field.
For	the	sake	of	our	exercise,	we	will	use	the	URL	and	Attribution	string	for

MapQuest-OSM.
Click	on	 .	The	final	map	will	look	like	the	following	screenshot:	



When	we	hover	over	any	bubble,	the	tool	tip	shows	the	relevant	country	and
sales.



How	it	works…
While	loading	the	script	for	this	recipe,	we	made	the	use	of	the	GeoMakePoint()
function.	This	function	creates	and	tags	a	point	with	its	latitude	and	longitude
information.	Each	country	is	thus	linked	to	point	data,	which	is	plotted	on	the
map.	When	we	use	a	KML	file	as	a	source,	Qlik	Sense	automatically	detects	the
Geopoint	field;	therefore,	there	is	no	need	to	use	a	special	function	to	define	the
same.

While	changing	the	background	for	the	map,	we	insert	the	required	URL	that
connects	to	the	tile	server	that	we	want	to	use.	For	copyright	reasons,	the
attribution	string	should	correspond	to	the	desired	URL.



There's	more…
Point	data	can	also	be	read	from	Excel	files:

1.	 If	the	point	data	is	stored	in	a	single	column	called	Location,	that	is,	if	each
point	is	specified	as	an	array	of	x	and	y	coordinates	and	represented	as	[x,
y].	Here	x=longitude	and	y=latitude	then:

The	geospatial	coordinates,	namely,	the	latitudes	and	longitudes	should
be	tagged	with	$Geopoint	so	that	the	field	Location	is	recognized	as	a
point	data	field.
As	an	example,	consider	that	the	Location	data	is	being	extracted
from	a	file	called	Country.XLS	having	three	columns	Country,
Location,	and	Sales;	where	Location	contains	the	point	data.	The
script	in	such	a	case	will	look	like	the	following:

LOAD

			Country,

			Location,

			Sales

		FROM	'lib:///Country.xls'	(biff,	embedded	labels,	table	

is	(Sheet1$));

		Tag	Field	Location	with	$Geopoint;

Run	the	script	and	add	the	point	dimension	to	the	map.
If	the	point	data	is	stored	in	two	columns,	that	is,	one	for	latitude	and	the	other

for	longitude	then:
The	GeoMakePoint()	function	should	be	used	to	generate	point	based	data

Similarly,	one	can	make	use	of	the	KML	files,	which	contain	point	data,	area
data,	or	both	in	order	to	create	maps	in	Qlik	Sense.	The	following	URL	explains
the	process	of	generating	maps	in	Qlik	Sense	using	the	KML	files:

https://community.qlik.com/docs/DOC-7354

https://community.qlik.com/docs/DOC-7354


Reference	lines	in	Sales	versus	Target
gauge	chart
Recently,	while	delivering	a	proof	of	concept,	I	was	asked	by	a	customer	if	we
could	create	a	"Stephen	Few	Bullet	chart"	in	Sense.	This	is	not	possible	out	of
the	box	because	of	the	simple	reason	being	that	the	bullet	chart	involves
overlaying	a	bar	chart	on	top	of	a	gauge	chart	and	overlaying	objects	in	Sense	is
not	allowed.	So,	I	thought	of	delivering	the	same	result	using	just	the	gauge	chart
and	making	use	of	reference	lines.



Getting	ready
Load	the	following	script	in	the	Qlik	Sense	data	load	editor,	it	gives	information
about	the	Sales	and	Target	values	for	four	countries:

LOAD	*	INLINE	[

Country,	Sales,	Target

USA,	10000,	8500

UK,	7000,	9500

Germany,	5000,	4500

Japan,	6000,	6000

];



How	to	do	it…
1.	 Drag	across	a	gauge	chart	object	onto	the	sheet	from	the	Assets	panel	on	the

left.
2.	 Click	on	Add	measure	and	type	in	the	following	expression.	Label	it	as

Sales	vs	Target:

Sum(Target)

Under	Add-Ons,	click	on	the	Reference	lines	and	add	a	reference	line
expression	with	the	following	definition:

=Sum	(Sales).

Label	the	reference	line	expression	as	Sales.	Change	the	color	of	the	reference
line	to	red	by	clicking	on	the	color	dropdown.
Under	Appearance,	click	on	Presentation	and	set	the	Max	range	Limit	as:

=Sum(Target)*1.2

Select	the	representation	as	Bar	and	orientation	as	horizontal.
Check	the	Use	Segments	box.
Next,	click	on	the	Add	limit	button	and	add	the	following	limit:
Segment	1:

=Sum	(Target)*0.30

	Click	on	the	segment	area	to	change	the	default	color	to	Grey.

Again,	click	on	the	Add	limit	button	to	create	a	second	segment	with	the
following	limit:

Segment	2:

=Sum	(Target)*0.60

Click	on	the	segment	area	to	change	the	default	color	to	Red.

Finally,	click	on	the	Add	limit	button	to	create	a	third-segment	with	the
following	limit:

Segment	3:

=Sum	(Target)

	Click	on	the	segment	area	to	change	the	default	color	to	

Yellow.

Select	the	color	of	the	last	segment	as	Green.	Check	the	Gradient	box	for	the



last	segment.
Click	on	 	when	finished.
The	resulting	chart	will	look	similar	to	the	following	screenshot:	

	



How	it	works…
The	color	segments	signify	how	the	sales	of	a	particular	country	are	performing,
as	compared	to	the	target	values.	The	red	reference	line	indicates	the	sales	value.
The	color	red	does	not	signify	anything	else	and	is	used	only	to	highlight	sales.
Hence,	you	can	use	any	other	color	of	your	choice.

The	sales	can	be	more	than	the	set	target.	Hence	the	Max	range	Limit	is	set	to
1.2	times	the	target	value.	Due	to	this	setting,	the	target	value	is	represented	by
the	black	line	at	the	end	of	the	bar.	Surely,	sales	can	surpass	the	targets	by	more
than	20	percent.	So,	the	Max	range	figure	can	be	altered	by	say	to	1.5	times	of
the	target	value.	One	look	at	the	graph	and	we	can	easily	make	out	if	we	are	in
the	red	zone	or	are	doing	better	than	expected.



There's	more…
A	similar	concept	is	explored	in	the	Capventis	Redmond	Pie-Gauge	Chart
designed	by	Stephen	Redmond.	The	gauge	in	this	object	is	more	of	a	modified
bullet	chart.	If	the	sales	are	more	than	the	target	then	good	performance	is	shown
as	a	shaded	sector	to	the	right	of	the	vertical,	while	if	the	performance	is	below
par	it	is	shown	as	a	shaded	sector	to	the	left	of	the	vertical,	as	shown	in	the
following	figure:	

	

The	Capventis	Redmond	Pie-Gauge	can	be	downloaded	from	Qlik	Branch	at
http://branch.qlik.com/projects/showthread.php?159-CapVentis-Redmond-Pie-
Gauge-for-Qlik-Sense

http://branch.qlik.com/projects/showthread.php?159-CapVentis-Redmond-Pie-Gauge-for-Qlik-Sense


See	also
Creating	Tree	Maps



Effectively	using	the	KPI	object	in
Qlik	Sense®
A	visualization	should	provide	the	user	with	a	careful	and	effective	presentation
of	the	data.	Numbers	have	an	impact	value	and	they	contain	a	message.	Key
performance	indicators	demonstrate	the	importance	of	numbers	in	business	and
also	communicate	the	health	of	the	business	to	the	audience.



Getting	ready
We	will	make	use	of	the	application	from	the	preceding	recipe.	The	application
has	the	following	script	loaded,	it	gives	information	on	the	Sales	and	Target
values	for	four	countries:

LOAD	*	INLINE	[

Country,	Sales,	Target

USA,	10000,	8500

UK,	7000,	9500

Germany,	5000,	4500

Japan,	6000,	6000

];



How	to	do	it…
1.	 Go	to	the	App	overview	and	create	a	new	sheet.
2.	 Name	the	sheet	as	KPI	and	open	it.

3.	 Go	to	the	Edit	mode	by	clicking	on	 .
4.	 Drag	across	the	 	object	from	the	Assets	panel	on	to	the	sheet.
5.	 Next,	add	the	following	measure:

(Sum(Sales)-Sum(Target))/Sum(Target)

Name	the	label	as	Sales	vs	Target.
Once	we	add	the	measure,	we	can	see	a	host	of	properties,	such	as	number

format,	color,	and	so	on,	for	the	measure	directly	beneath	the	Expression	editor
box.
For	the	measure,	change	the	number	formatting	to	Number	and	select	the

percentage	format	(12.3%)	from	the	available	formats	under	the	dropdown.
Next,	add	the	limits	to	define	colors.	Switch	on	Conditional	colors.
Click	on	Add	limit	and	set	the	limit	under	function	as	0.
Click	on	the	first	segment	of	the	color	bar	and	select	the	color	as	red	with	a	

	symbol	.Click	on	the	second	segment	of	the	color	bar	and	select	the	color	as

green	with	a	 	symbol.

The	KPI	object	appears	as	the	following:	
Under	Appearance,	click	on	General	and	Switch	on	Show	titles	and	name

the	title	as	Sales	vs	Target.
Name	the	subtitle	as:

IF(getselectedcount(Country)>0,Country,'	')

Next,	go	to	the	Presentation	dropdown	and	uncheck	Show	Title.
Add	the	Filter	pane	object	from	the	Assets	panel	on	the	sheet	and	select	the

dimension	as	Country.	Select	different	countries	to	see	how	your	organization	is
faring	with	respect	to	each	country:	



Next,	we	will	link	our	KPI	object	to	a	sheet	that	shows	detailed	reports.
Create	a	new	sheet	called	Reports.
Create	a	Table	report	on	the	reports	sheet	with	Country	as	the	dimension	and

the	following	measures:
Sum(Sales):	Label	it	Sales.
Sum(Target):	Label	it	Target.
(Sum(Sales)-Sum(Target))/Sum(Target):	Label	it	Sales	vs	Target.	For
the	measure,	change	the	number	formatting	to	number	and	select	the
percentage	format	(12.3%)	from	the	available	formats	under	dropdown.

Move	back	to	the	KPI	sheet	and	enter	the	Edit	mode	by	clicking	on	

.	Select	the	KPI	object.	This	will	activate	the	Properties	panel	on
the	right.
Under	Appearance,	go	to	Presentation	and	switch	on	Link	to	Sheet.	Under

Select	a	sheet,	select	the	Reports	sheet	and	click	on	 .
When	we	click	on	the	KPI	object	on	the	user	interface,	it	directs	us	to	the

reports	sheet	where	you	can	analyze	all	the	sales	and	target	figures	for	each
country:	



How	it	works…
The	KPI	object	is	an	important	visualization	object	on	any	dashboard.	The	color
segments	we	defined	in	the	properties	determine	if	the	country	is	doing	better
than	its	set	target	value	or	not.	If	the	sales	are	below	the	target	values	then	the
KPI	figure	is	shown	in	red	or	else	in	green.	Linking	the	KPI	to	the	Reports
sheets	helps	the	user	to	dig	deep	into	the	data	and	see	the	more	granular	figures.



There's	more…
The	KPI	object	can	also	be	represented	using	two	measures.	We	can	show	a
comparison	between	key	figures	in	a	single	KPI	object.	For	example,	the
absolute	sales	and	target	values	can	be	shown	adjacent	to	each	other	as	separate
figures.	If	the	sales	are	greater	than	the	target	then	the	value	is	represented	in	a
green	color	or	else	in	a	red	color.

This	can	be	achieved	by	following	the	steps	mentioned	in	the	following	steps:

1.	 Create	a	new	KPI	object	by	following	the	steps	given	in	the	previous	recipe.
Label	the	object	as	Sales	vs	Target-1.

2.	 Add	the	following	measures:
Sum(Sales):	Label	it	Sales
Sum(Target):	Label	it	Target

3.	 For	Sales	switch	on	the	conditional	colors.
4.	 Click	on	Add	limit.
5.	 Set	the	limit	under	function	as:

=Sum(Target)

6.	 Select	the	first	color	as	red	with	a	 	symbol	and	the	second	as	green	with

a	 	symbol.
7.	 For	Target,	select	the	font	color	as	Blue
8.	 The	resultant	object	will	be	similar	to	the	following:

	



See	also
Creating	text	and	images



Creating	Tree	Maps
The	tree	maps	(previously	called	block	charts	in	Qlikview)	are	a	good	way	to
show	how	different	parts	combine	to	form	the	whole.	To	add	more	depth	to	the
visualization,	you	can	easily	highlight	areas	of	importance	by	adding	color
codes.



Getting	ready
For	this	recipe,	we	will	make	use	on	inline	data	load	which	gives	the	product
sales	information.	Load	the	following	code	into	the	data	load	editor:

LOAD	*	INLINE	[

				Product	Line,	Product	Group,	Product	Sub	Group,	Year,	Sales,	

Cost

				Drink,	Beverages,	Juice,	2015,	12000,	6000

				Drink,	Beverages,	Juice,	2014,	16000,	7000

				Drink,	Beverages,	Soda,	2015,	42000,	26000

				Drink,	Beverages,	Soda,	2014,	68000,	57000

				Drink,	Beverages,	Water,	2015,	18000,	8000

				Drink,	Beverages,	Water,	2014,	10000,	6000

				Drink,	Dairy,	Milk,	2015,	25000,	22000

				Drink,	Dairy,	Milk,	2014,	22000,	20000

				Food,	Dairy,	Cheese,	2015,	22000,	8000

				Food,	Dairy,	Cheese,	2014,	31000,	30000

				Food,	Produce,	Nuts,	2015,	50000,	30000

				Food,	Produce,	Nuts,	2014,	46000,	26000

				Food,	Produce,	Tofu,	2015,	26000,	21000

				Food,	Produce,	Tofu,	2014,	15000,	7000

				Food,	Snacks,	Chips,	2015,	31000,	6000

				Food,	Snacks,	Chips,	2014,	15000,	9000

				Food,	Snacks,	Dips,	2015,	10000,	6000

				Food,	Snacks,	Dips,	2014,	6000,	3000

];



How	to	do	it…
1.	 Drag	a	Tree	Map	object	onto	the	content	page.
2.	 Add	Product	line	as	a	dimension.
3.	 Add	Product	Group	as	a	dimension.
4.	 Add	Product	Sub	Group	as	a	dimension.
5.	 Add	Sum(Sales)	as	a	measure	and	label	it	Sales.
6.	 From	the	Properties	panel	on	the	right-hand	side	of	the	screen	under

Appearance	|	Colors,	toggle	the	option	from	Auto	to	Custom.
7.	 In	the	drop-down	window,	select	By	Expression	and	enter	the	following

expression:

If(Sum({<Year={2014}>}Sales)>Sum({<Year={2015}>}Sales),	

Red(),Green())

Click	on	Done.
The	finished	result	should	resemble	the	following	picture:	

	



How	it	works…
The	tree	map	object	groups	the	data	based	on	the	order	of	the	dimensions	you
added.	By	adding	the	color	coding	expression	we	can	quickly	see	the	products
that	are	doing	better	this	month	compared	to	the	previous	month.



There's	more…
The	red	and	green	indicators	used	in	the	preceding	image	can	be	useful	to	spot
products	that	are	not	performing	in-line	with	similar	products.	To	get	more	value
from	these	type	of	indicators,	we	can	change	the	density	of	the	color	to	reflect
the	magnitude	of	change.

Replace	the	color	expression	we	used	in	step	7	of	How	to	do	it...	with	the
following	code:

If((Sum({<Year={2015}>}Sales)-	Sum({<Year=

{2014}>}Sales))/Sum({<Year={2015}>}Sales)>0,

			ColorMix1((Sum({<Year={2015}>}Sales)-	Sum({<Year=

{2014}>}Sales))/Sum({<Year={2015}>}Sales),	white(),RGB(50,255,50)),

if((Sum({<Year={2015}>}Sales)-	Sum({<Year=

{2014}>}Sales))/Sum({<Year={2015}>}Sales)<0,

			ColorMix1(fabs((Sum({<Year={2015}>}Sales)-	Sum({<Year=

{2014}>}Sales))/Sum({<Year={2015}>}Sales)),	

white(),RGB(255,50,50))))

The	chart	should	now	resemble	the	following	image:

	

Based	on	the	values	returned	by	the	expression,	the	ColorMix	function
automatically	assigns	a	range	of	colors.	In	the	preceding	example,	we	have	set
up	two	color	ranges;	the	first	If	statement	goes	from	white	to	green	for	the



positive	numbers	and	the	second	goes	from	white	to	red	for	the	negative
numbers.	The	ColourMix	function	only	works	with	positive	numbers,	so	we	use
the	Fabs	function	to	convert	the	negatives	into	positives	once	they	are	identified
by	the	second	If	statement.



Creating	dimensionless	bar	charts	in
Qlik	Sense®
A	bar	chart	is	usually	defined	with	one	or	two	dimensions	and	a	measure.
However,	we	need	to	have	dimensionless	bar	charts	while	designing	KPIs	on	the
dashboards	and	also	in	certain	other	scenarios.	By	default,	Qlik	Sense	will	not
allow	this.	However,	there	is	a	workaround	that	is	discussed	in	the	following
sections.



Getting	ready
We	will	make	use	of	the	same	application	that	we	developed	for	the	KPI	recipe.
The	application	has	got	the	following	script	loaded,	which	gives	information	on
the	Sales	and	Target	values	for	four	countries.	In	addition,	we	will	add	a	new
column	called	as	Dummy.

Make	sure	to	save	and	load	the	script	once	the	Dummy	field	is	added:

LOAD	*	,	1	as	Dummy	INLINE	[

Country,	Sales,	Target

USA,	10000,	8500

UK,	7000,	9500

Germany,	5000,	4500

Japan,	6000,	6000

];

We	want	to	display	the	overall	sales	for	the	company	and	change	the	color	of	the
bar	based	on	the	threshold	value.



How	to	do	it…
1.	 Go	to	the	App	overview	and	create	a	new	sheet.
2.	 Name	the	sheet	as	Dimensionless	Bar	Chart	and	open	it.

3.	 Go	to	the	Edit	mode	by	clicking	on	 .

4.	 From	the	Assets	panel,	drag	across	the	 	object	on	the	sheet.

5.	 Go	to	the	Master	Items 	in	the	Assets	panel	and	create	a	dimension
with	the	name	Dummy	as	shown:

=Valuelist('Dummy')

In	the	chart	under	Dimensions,	use	the	just	created	master	dimension	Dummy
as	the	dimension.
Add	the	measure	as	Sum(Sales)	and	label	it	as	Sales.
Under	Appearance,	click	on	Presentation	and	make	the	chart	as	Horizontal

and	switch	on	the	Value	Labels.
Under	Appearance,	click	on	General	and	add	Company	Sales	as	the	chart

Title	under	the	General	properties.
Under	Appearance,	click	on	Colors	and	legend.	Switch	off	auto	colors	and

select	By	expression	under	the	drop-down	menu.
Add	the	following	color	code	expression:

If(Sum(Sales)>Sum(Target),RGB(0,255,0),RGB(255,0,0))

Make	sure	that	The	expression	is	a	color	code	is	checked.
Go	to	the	labels	and	click	on	the	Title	option	under	 	and	select

None.

Under	 ,	switch	off	the	Auto	range	and	select	Min/max	under
custom.	Set	the	min	value	to	0	and	the	max	value	to	30000.
The	final	chart	looks	like	the	following:	



	
Create	a	Filter	pane	object	with	Country	as	the	dimension.	Now	select

different	countries	and	view	the	results.



How	it	works…
Qlik	Sense	doesn't	allow	dimensionless	bar	charts.	So,	we	need	to	create	a
Dummy	dimension	that	has	only	one	single	field	value.	Further	when	we	select
none	under	the	 	labels	and	title	option,	it	hides	this	field	value
from	the	axis,	thus	serving	the	purpose.	The	color	code	used	for	the	bars	will
turn	the	bar	red	if	the	sales	for	a	country	are	less	than	or	equal	to	the	target
values:	



There's	more…
We	can	use	the	Dummy	dimension	directly	from	our	source	data	instead	of
creating	a	master	dimension	in	the	frontend.	Another	approach	is	to	use	a
calculated	dimension	=1	and	name	it	Dummy.	All	the	approaches	will	yield	the
same	result.	To	make	the	chart	more	informative	one	can	add	reference	lines	for
the	target.



See	also
Adding	Reference	Lines	to	trendline	charts



Adding	Reference	Lines	to	trendline
charts
One	cannot	overstate	the	importance	of	adding	context	to	analysis.	Take	the
example	of	having	the	headline	number	Average	Call	Time	displayed	on	a
dashboard.	While	this	might	clearly	be	an	important	metric	for	a	call	center,	but
on	its	own	it	portrays	very	little.	As	shown	in	the	Dimensionless	bar	chart	recipe
in	the	preceding	section,	we	used	reference	lines	to	add	the	context	required	to
make	the	number	meaningful.	Sticking	to	the	example	of	Average	Call	Time,
we	may	also	want	to	see	alongside;	a	previous	point	in	times	position,	the
national	or	a	competitor's	average,	the	internal	target,	and	so	on.	This	recipe
extends	the	use	of	reference	lines	further.



Getting	ready
For	this	recipe,	we	will	make	use	on	inline	data	load	which	gives	us	the	call
bounce	rates	for	different	periods.	Add	the	following	code	into	the	data	load
editor	and	reload	the	Qlik	Sense	application:

WebStats:

LOAD	*	INLINE	[

				Period,	BounceRate

				1,	0.26

				2,	0.25

				3,	0.24

				4,	0.24

				5,	0.27

				6,	0.28

				7,	0.21

				8,	0.34

				9,	0.24

				10,	0.25

];



How	to	do	it…
1.	 Add	a	line	chart	object	onto	the	content	page.
2.	 Add	Period	as	a	dimension.
3.	 Add	AVG(BounceRate)	as	a	measure.
4.	 From	the	Properties	panel	|	under	Add-ons	click	on	the	Reference	lines

button	and	then	on	Add	reference	line
5.	 Set	the	Label	as	Upper	Threshold	and	set	the	Reference	line	expression	to

the	following:

=Avg(BounceRate)+Stdev(Total	Aggr(	Avg(BounceRate),Period))

Set	the	color	to	red.
Click	Add	reference	line	again,	this	time	setting	the	label	to	Lower

Threshold	and	the	expression:

=Avg(BounceRate)-Stdev(Total	Aggr(	Avg(BounceRate),Period))

Set	the	color	to	yellow.
Click	Add	reference	line	for	a	third	time	and	set	the	label	to	Average	and	the

expression	to:

=Avg(BounceRate)

Set	the	color	to	green.
The	final	visualization	should	resemble	the	following	image:	



	



How	it	works…
The	preceding	chart	is	often	referred	to	as	a	Statistical	Process	Control	(SPC)
chart.	The	upper	and	lower	threshold	reference	lines	set	a	boundary	of	normal
operation.	Data	points	that	fall	outside	of	these	reference	lines	differ	from	the
norm	and	are	highlighted	as	such.	The	upper	and	lower	limits	are	simply	the
average	plus	or	minus	the	standard	deviation.	We	use	the	Aggr	function	to	"pre-
calculate"	the	average	over	the	period	dimension	and	then	apply	the	Stdev
function	to	this	number.

Definition:	Standard	deviation	(represented	by	the	symbol	sigma,	s)	shows	how
much	variation	or	"dispersion"	exists	from	the	average	(mean)	or	expected	value.
A	low	standard	deviation	indicates	that	the	data	points	tend	to	be	very	close	to
the	mean;	high	standard	deviation	indicates	that	the	data	points	are	spread	out
over	a	large	range	of	values:

http://en.wikipedia.org/wiki/Standard_deviation

http://en.wikipedia.org/wiki/Standard_deviation


Creating	text	and	images
Images	in	Qlik	Sense	for	desktop	are	stored	in	the	following	location	by	default,
C:\Users\<\*your	own	user

folder*>\Documents\Qlik\Sense\Content\Default\

Once	images	have	been	added	to	the	folder	they	are	automatically	made
available	in	Qlik	Sense.	To	add	images	to	your	dashboard	follow	these	steps.



Getting	ready
For	this	recipe,	we	will	make	use	on	inline	data	load	which	gives	us	sales
information.	Load	the	following	code	into	your	Qlik	Sense	application:

		SalesData:

		LOAD	*	INLINE	[

						ID,	Sales,	Quantity,	Cost

						1,	15000,	50,	11000

						2,	30000,	100,	25000

];



How	to	do	it…
Adding	Images
1.	 Place	your	desired	image	file	into	the	folder	C:\Users\<\*your	own	user

folder*>\My	Documents\Qlik\Sense\Content\Default\.
2.	 Add	the	Text	&	Image	object	from	the	Assets	panel	to	the	content	area.

3.	 With	the	Text	&	Image	object	selected,	click	on	 	to
add	text	and	measures.

4.	 The	design	bar	will	appear,	click	on	the	Insert	an	image	button	in	the	far
right,	as	shown	in	the	following:	

Select	and	insert	the	desired	image	from	the	default	folder.
One	can	edit	the	sizing	options	of	the	image	without	clicking	on	the	image

button	in	the	design	bar	as	shown	in	the	preceding	step.	To	do	this,	go	to	the
properties	of	the	Text	&	Image	object	and	set	the	same	image	as	a	background,
using	this	method	now	gives	you	access	to	size	options	as	shown	in	the



following	screenshot:	

Adding	Text
1.	 Add	another	Text	&	Image	object	from	the	Assets	panel	to	the	content	area.
2.	 If	you	double	click	on	the	object	in	the	content	page	you	can	immediately

start	typing	the	text.	You	will	see	some	basic	formatting	options	above	the
object,	as	seen	in	the	following:	

Type	the	following	into	the	text	box	Sales	=.
Next,	from	the	properties	pane	under	Data	add	the	following	measure:



SUM(Sales)	and	label	it	'Sales'.

From	the	Number	formatting	drop-down	menu	select	Number	and	from	the
next	drop-down	below	select	the	top	option	with	no	decimal	places	(for	example
1,000).
You	can	repeat	the	process	using	more	text	objects	and	different	expressions	if

you	like.	Multiple	measures	can	be	added	to	the	same	object	or	they	can	be
separated	out	as	shown	in	the	following	examples:	

An	example	of	text	boxes	and	images	is	in	the	following:	



How	it	works…
Adding	text	or	images	to	a	dashboard	can	be	the	key	to	help	users	learn	more
about	what	they	are	looking	at,	not	just	the	company	branding.

In	the	preceding	example,	we	have	added	a	metric	into	the	text	box.	Normally,
we	suggest	using	the	KPI	object	in	these	instances.

However,	text	boxes	are	essential	if	you	wish	to	add	a	narrative	beyond	a	single
number	if	all	you	are	trying	to	do	is	show	one	number,	using	a	text	box	does	give
the	benefit	of	horizontal	labeling.	For	example	the	"date	of	the	last	reload".



Applying	limitations	to	charts
While	outliers	can	reveal	all	kinds	of	useful	intelligence	such	as	issues	in	data
capture	or	associated	process	patterns,	they	can	cause	problems	when	you	are
building	data	visualizations.	The	most	common	issue	is	to	do	with	scale,	as	you
can	see	in	the	following	example.



Getting	ready
For	this	recipe,	we	will	make	use	on	inline	data	load	which	gives	us	the
information	on	the	number	of	call	made	for	each	month.	Add	the	following	code
into	the	data	load	editor	and	reload	the	Qlik	Sense	application:

Data:

LOAD	*	INLINE	[

				Month,	Date,	Calls

				Jan,	27/01/15,	25

				Jan,	28/01/15,	27

				Jan,	29/01/15,	25

				Jan,	30/01/15,	600

				Jan,	31/01/15,	22

				Feb,	01/02/15,	20

				Feb,	02/02/15,	19

				Feb,	03/02/15,	21

				Feb,	04/02/15,	1

				Feb,	05/02/15,	600

];

.



How	to	do	it…
1.	 Add	a	Bar	chart	object	onto	the	content	page.
2.	 Add	Month	as	a	dimension.
3.	 Add	Avg(Calls)	as	a	measure.	Label	it	Average	Calls.
4.	 Click	on	Done.	Notice	that	the	values	in	both	months	are	just	below	150:	

Next,	go	back	into	the	Edit	mode	and	replace	the	measure	with	the	following
code:

Avg(If	(Calls	>	Aggr(NODISTINCT	Fractile(Calls,	0.1),	Month)	and	

Calls	<	Aggr(NODISTINCT	Fractile(Calls,	0.9),	Month),Calls))

Click	on	Done.
The	chart	should	now	resemble	the	following	image.	It	not	only	has	both	bars

significantly	reduced	down	to	below	30,	but	there	is	also	a	much	bigger	gap
between	January	and	February's	average	call	volumes:	





How	it	works…
If	we	look	at	the	source	data	we	loaded	at	the	beginning	of	the	recipe	it	is	clear
that	there	are	some	outliers	present.	To	exclude	these	and	get	a	real	picture	of	the
normal,	average	amount	of	calls,	we	remove	the	top	and	bottom	10	percent	of
the	value.	This	is	done	using	the	fractile	function.	The	fractile	function
calculates	the	cut-off	point	for	10	and	90	percent	based	on	our	data.	The	Aggr
function	is	needed	because	fractile	is	an	aggregation	function	being	nested
inside	another	aggregation.



There's	more…
Another	method	of	handling	outliers	is	not	to	exclude	them	from	the	expression,
but	hide	them	from	what	is	visualized.	For	example,	if	a	data	point	far	exceeds
the	norm,	you	can	set	the	axis	limit	to	the	second	largest	value;	this	focuses	the
visualization	on	the	points	that	are	closely	related.	You	can	do	this	by	going	to
the	object	properties:

Under	Appearance,	click	on	Y-axis.
Switch	off	Auto	Range	and	set	the	Max	value	by	using	an	expression	such
as	the	following:

=Max(aggr(avg(Calls),Date),2)

Here,	we	simply	work	out	what	the	second	largest	number	is	and	set	that	as	the
axis	limit.	This	way	we	can	produce	an	all	inclusive	line	graph	by	date,	albeit
one	data	point	will	be	off	the	screen.



Adding	thumbnails	–	a	clear
environment
It	is	easy	to	skip	over	minor	features	of	a	BI	platform.	Unlike	Qlikview,	which
has	a	high	number	of	options	for	chart	customizations,	Qlik	Sense	features	are
more	universal.	The	majority	of	components	will	be	relevant	to	you	and	as	such
should	be	given	due	consideration.

Here,	our	aim	is	to	simplify	the	environment	by	adding	thumbnails	and	metadata
descriptions	at	a	high	level	to	the	application	and	the	sheets	within.



Getting	ready
Open	the	Qlik	Sense	Desktop	hub	and	either	open	up	an	existing	application	or
create	a	new	one.



How	to	do	it…
1.	 Find	an	image	you	want	to	use	as	the	thumbnail	for	your	application.	Copy

the	image	into	the	following	folder	C:\Users\*your	own	user
folder*\Documents\	Qlik\Sense\Content\Default\

2.	 From	the	App	overview	screen	click	on	the	edit	 	button	in	the	top
right	corner.

3.	 Give	your	application	a	Title	and	Description.
4.	 Adjacent	to	the	Title	and	Description	window	is	the	area	for	the

application	thumbnail.

5.	 Click	the	change	thumbnail	image	 .
6.	 Select	the	image	that	you	added	to	the	Qlik	folder	in	step	one	and	then	click

Insert.
7.	 Finally,	click	the	stop	editing	tick	button	in	the	top	right	hand	corner:	

Depending	on	the	image	you	have	chosen,	the	color	of	the	background	will
also	change	as	shown	in	the	preceding	image.
You	can	repeat	the	process	for	sheets	by	clicking	on	the	 	button	next	to

each	sheet	description.
You	can	see	a	great	example	of	how	this	should	be	implemented	in	the	default

helpdesk	management	application	that	is	available	with	each	fresh	install	of	Qlik
Sense	desktop.	Take	special	note	of	the	sheet	descriptions	that	prompt	questions
you	can	answer:	





How	it	works…
I	have	seen	many	unorganized	BI	environments	before	and	it	really	has	a
negative	impact	on	the	user	experience.	When	you	first	go	into	the	Qlik	Sense
hub	what	do	you	prefer	to	be	presented	with:

1:	Default	image	and	text	2:	With	Thumbnails	and	descriptions

	

The	second	image	looks	more	pleasing	and	professional	to	the	eye.	User
experience	is	an	important	factor	in	adoption	of	the	tool.	If	the	first	screen	you
see	looks	rushed	or	is	confusing,	it	will	start	the	user	off	on	a	bad	foot.

The	thumbnails	and	descriptions	also	apply	to	sheets	within	an	application.	By
default,	small	thumbnails	are	displayed	as	an	image	showing	objects	by	type	and
placement.	These	can	be	replaced	with	something	clearer	and	more	meaningful
to	the	audience.	This	is	hardly	storyboarding,	but	you	should	know	what	each
page	is	trying	to	achieve.	Actually,	asking	questions	about	each	screen	can	help
you	get	a	feel	for	the	shape	of	the	application	and	the	flow	of	analysis.	Are	you
asking	these	questions?

1.	 Who	are	the	users	of	this	screen?
2.	 What	is	the	page	showing?
3.	 What	questions	will	the	page	answer?
4.	 What	actions	will	that	enable?



While	not	universal,	asking	questions	such	as	these	regularly	will	help	keep	your
focus	on	the	audience.



Navigating	many	data	points	in	a
scatter	chart
The	following	recipe	showcases	an	interesting	concept	in	the	use	of	scatter
charts	in	Qlik	Sense.	This	feature	is	available	from	version	2.0+	of	Qlik	Sense.



Getting	ready
Load	the	following	code	into	your	Qlik	Sense	application:

Transactions:

Load

	Round(1000*Rand()*Rand()*Rand())	as	Sales,

	Round(10*Rand()*Rand()*Rand())	as	Quantity,

	RecNo()	as	TransID

Autogenerate	1000000

	While	rand()<0.5	or	IterNo()=1;



How	to	do	it…
1.	 Create	a	new	sheet	and	drag	a	scatter	plot	chart	object	onto	the	content

page.
2.	 Add	TransID	as	a	dimension.
3.	 Add	Sum(Sales)	as	the	first	measure.	Label	it	Sales.
4.	 Add	Sum(Quantity)	as	the	second	measure.	Label	it	Quantity.
5.	 Click	on	Done.
6.	 Title	the	chart	as	Sales	vs	Quantity.
7.	 You	will	notice	that	you	cannot	select	data	inside	the	chart	like	you	can	with

every	other	Sense	visualization.	To	navigate	the	data	you	have	to	scroll	in
and	out	using	the	mouse	wheel.	The	object	will	look	like	the	following
image;	try	scrolling	in:	

As	you	zoom	further	into	the	chart	,	the	number	of	data	points	being	displayed
reduces	at	once.	You	will	eventually	see	the	details	of	each	data	point	displayed
in	each	block.	The	higher	density	blocks	are	also	color	coded	as	show	in	the
following:	



Eventually,	you	can	zoom	in	enough	and	reduce	the	number	of	data	points	to
where	they	are	identifiable	individually.	At	this	point	the	graphic	will	revert	its
display	to	a	more	standard	scatter	chart	look.	Those	with	enough	space	around
them	actually	have	the	value	displayed	as	shown	in	the	following:	



How	it	works…
This	is	a	very	intelligent	addition	by	Qlik	to	the	normal	scatter	chart	display.
This	chart	plots	over	a	million	data	points	effortlessly.	Doing	this	the	traditional
way	is	very	process	intensive.	When	you	want	to	extract	data	volumes	of	this
size,	you	normally	tend	to	look	at	the	pattern	and	not	at	the	individual	numbers.
This	archives	both	by	displaying	the	individual	points	at	the	point	they	would
make	sense	and	not	before.



There's	more…
While	the	color	coding	is	fixed	at	the	high	level	you	can	apply	color	coding
expressions	like	normal.	This	only	gets	applied	when	you	zoom	in	far	enough	to
see	the	individual	data	points.



Chapter	5.	Useful	Functions
In	this	chapter,	we	will	focus	on	some	interesting	and	useful	functions	available
in	Qlik	Sense:

Using	an	extended	interval	match	to	handle	Slowly	Changing	Dimensions
Using	the	Previous()	function	to	identify	the	latest	record	for	a
dimensional	value
Using	the	NetworkDays()	function	to	calculate	the	working	days	in	a
calendar	month
Using	the	Concat()	function	to	display	a	string	of	field	values	as	a
dimension
Using	the	MinString()	function	to	calculate	the	age	of	the	oldest	case	in	a
queue
Using	the	RangeSum()	function	to	plot	cumulative	figures	in	trendline
charts
Using	the	Fractile()	function	to	generate	quartiles
Using	the	FirstSortedValue()	function	to	identify	the	median	in	a	quartile
range
Using	the	Derive	and	Declare	functions	to	generate	Calendar	fields
Setting	up	a	moving	annual	total	figure
Using	the	For	Each	loop	to	extract	files	from	a	folder
Using	the	Peek()	function	to	create	a	currency	Exchange	Rate	Calendar
Using	the	Peek()function	to	create	a	Trial	Balance	sheet



Introduction
In	this	chapter,	we	will	shift	our	focus	to	the	functions	available	in	Qlik	Sense.	In
certain	situations,	the	functions	can	be	used	in	the	script	or	they	can	be	used	in
frontend	expressions	to	get	solutions	for	complex	requirements.	All	the	functions
discussed	in	this	chapter	will	find	their	way	into	most	of	the	Qlik	Sense
implementations.



Using	an	extended	interval	match	to
handle	Slowly	Changing	Dimensions
Sometimes	while	developing	the	Data	model	for	a	Business	Intelligence
application,	one	comes	across	dimensional	values	that	tend	to	change	with	time.
Such	dimensions	are	known	as	Slowly	Changing	Dimensions.	For	example,	an
employee	joins	a	company	at	a	Junior	Executive	level	and	stays	at	the	same
position	for	1	year.	After	one	year,	the	designation	changes	to	Senior	Executive
and	then	changes	to	Project	Manager	after	3	years.	The	position	field	in	this	case
will	be	treated	as	a	Slowly	Changing	Dimension.

Such	Slowly	Changing	Dimensions	can	be	represented	in	Qlik	Sense,	provided
the	historical	data	is	stored	at	the	source	with	a	proper	"Position	Start	Date"	and
"Position	End	Date".

In	order	to	match	the	discrete	date	values	to	the	date	intervals,	we	will	make	use
of	the	intervalmatch	function.	At	the	same	time,	we	will	match	the	values	of
the	primary	key.	This	will	help	us	to	build	an	optimized	Data	model	and	properly
link	the	transactions	to	the	Slowly	Changing	Dimensions.



Getting	ready
The	following	recipe	assumes	a	hypothetical	situation	wherein	an	HR
department	is	trying	to	track	the	Employee	Journey	within	an	organization	that	is
tracking	the	various	positions	the	employee	has	held	within	his	or	her	tenure
with	the	company	and	the	related	compensation	against	each	position.	For	this
purpose,	we	will	create	the	following	Inline	tables	within	Qlik	Sense:

2	Dimension	Tables:	Employee	and	Position
1	Date	Intervals	table	to	track	changes	in	position	for	the	employee:
Employment

1	Fact	table:	EmpSalary

The	steps	to	do	so	are	as	follows:

1.	 Create	a	new	Qlik	Sense	application.
2.	 Load	the	following	script	in	Qlik	Sense:

//	============	Load	the	Employee	table	============

Employee:

LOAD	*	INLINE	[

				EmployeeID,EmployeeName

				11,Susan	Sayce

				22,Adam	Holliaoak

				33,Rod	Marsh

				44,Alex	Gerard

				55,Pete	Cox

];

//	============	Load	the	Position	table	============

Position:

LOAD	*	INLINE	[

PositionID,Position

1,HR	Analyst

2,HR	Director

3,HR	Executive

];

//	====	Load	the	Employee	table	with	the	Date	Intervals	====

EmployeeInt:	

LOAD	*,

				Autonumber(EmployeeID	&	'-'	&	PositionFrom	&	'-'	&	PositionTo)	

as	DatePositionKey;

LOAD	DATE(Date#(	PositionFrom,'DD/MM/YYYY'))	as	PositionFrom,



DATE(Date#(	PositionTo,'DD/MM/YYYY'))	as	PositionTo,	PositionID,	

EmployeeID

	INLINE	[

				PositionFrom,	PositionTo,PositionID,EmployeeID

				01/09/2009,	31/10/2010,2,11

				01/08/2008,	31/08/2009,1,11

				10/08/2008,	15/03/2010,1,22

				03/03/2008,	08/12/2008,2,33

				15/02/2008,	15/03/2010,3,44

				01/06/2008,	08/12/2008,3,55

];

//	============	Load	the	Employee	Salary	table	============

EmployeeSalary:

LOAD	EmpID	,DATE(Date#(	DateInToPosition,'DD/MM/YYYY'))	as	

DateInToPosition,	EmployeeSal	INLINE	[

				EmpID,DateInToPosition,EmployeeSal

				11,01/09/2009,90000

				11,01/08/2008,50000

				22,10/08/2008,45000

				33,03/03/2008,100000

				44,15/02/2008,60000

				55,01/06/2008,55000

];



How	to	do	it…
1.	 Open	the	Data	model	viewer.	The	Data	model	is	shown	in	the	following

figure.	We	can	see	that	the	EmpSalary	table	is	not	linked	to	the	Data	model.
If	we	try	to	link	the	table	through	the	EmpID	field,	then	the	employees	who
have	changed	their	positions	would	reflect	the	same	salaries	for	each
position,	which	is	not	correct.

2.	 Open	the	App	overview	and	create	a	new	sheet.	Drag	a	Table	object	onto
the	content	area.

3.	 Add	the	following	dimensions	to	the	table:	EmployeeID,	EmployeeName,
Position,	PositionFrom,	and	PositionTo.

4.	 Under	Sorting,	promote	EmployeeName	to	the	top.	Promote
PositionFrom	to	the	second	position	and	set	the	sort	order	as	numeric	and
ascending.



5.	 In	the	preceding	script,	Susan	Sayce	has	changed	her	position	from	HR
Analyst	to	HR	Director.	There	is	a	DateInToPosition	value	associated
with	each	position,	which	comes	from	the	EmployeeSalary	table.

6.	 We	will	make	use	of	the	IntervalMatch	function,	which	will	match	the
DateInToPosition	to	the	date	interval	of	PositionFrom	and	PositionTo.

7.	 Load	the	following	script	on	a	separate	section:

//	===	Link	Table	using	the	IntervalMatch	prefix	===

LinkTable:

IntervalMatch	(DateInToPosition,EmpID)

Load	distinct	PositionFrom,	PositionTo,	EmployeeID	AS	EmpID	

Resident	EmployeeInt;

Left	Join	(EmployeeSalary)

Load	

EmpID,

DateInToPosition,

Autonumber(EmpID	&	'-'	&	PositionFrom	&	'-'	&	PositionTo)	AS	

DatePositionKey

Resident	LinkTable;

//	============	Cleanup	============

Drop	Table	LinkTable;

Drop	Field	EmpID;

On	the	final	load,	the	Data	model	should	look	like	this:	



Open	the	App	overview	via	the	navigation	 	dropdown	on	the	top-left
corner.	Go	back	to	the	sheet	created	in	step	2.
In	the	Table	object,	add	the	following	measure	and	label	it	Salary:

Sum(EmployeeSal)

Make	sure	that	the	sorting	order	remains	same	as	mentioned	in	step	4,	that	is,
to	promote	EmployeeName	to	the	top.	Promote	PositionFrom	to	the	second
position	and	set	the	sort	order	as	numeric	and	ascending.
The	resultant	table	would	look	like	this:	

Select	a	particular	employee	to	see	all	the	associated	positions,	start	dates,	end



dates,	and	salaries.



How	it	works…
The	dimension	tables	are	loaded	first.	A	composite	key	comprising	EmployeeID,
PositionFrom,	and	PositionTo	is	created	in	the	EmployeeInt	table.

The	fact	table	EmployeeSalary	is	loaded	with	the	EmployeeID	value	represented
as	EmpId.

Under	LinkTable,	an	interval	is	assigned	to	each	combination	of	EmpID	and
DateInToPosition	using	the	intervalmatch	function.

Finally,	a	key	is	created	in	LinkTable	with	the	same	combination	of	EmployeeID,
PositionFrom,	and	PositionTo.	The	LinkTable	is	joined	back	to	the
EmployeeSalary	table.

The	problem	of	slowly	changing	dimensions	can	be	solved	using	the	extended
intervalmatch	syntax	explained	in	the	preceding	steps.	The	employee,
positions,	and	salaries	will	all	be	properly	linked.



There's	more…
In	the	preceding	example	we	have	joined	LinkTable	to	the	EmployeeSalary
table.	However,	one	should	bear	in	mind	that	this	can	only	be	done	if	there	is	a
Many-One	relationship	between	the	Employee	and	Position.	If	this	doesn't	hold
true,	that	is,	if	an	employee	knowingly	or	unknowingly	has	more	than	one
position	for	the	same	start	and	end	dates	in	the	source	data,	then	the	join	between
the	link	and	the	EmployeeSalary	table	will	result	in	an	increase	in	the	number	of
records.	In	such	a	situation,	the	left	join	should	be	avoided.

Instead	LinkTable	must	simply	be	linked	through	the	DatePositionKey
composite	key	to	the	EmployeeInt	table.	Another	composite	key	comprising
DateInToPosition	and	EmpID	must	be	created	which	should	link	back	to	the
same	key	in	EmployeeSalary.

The	resident	load	for	the	Link	table	would	be	as	follows:

Link:

Load	

Autonumber(EmpID	&	'-'	&	DateInToPosition)AS	DateInToPositionKey,

Autonumber(EmpID	&	'-'	&	PositionFrom	&	'-'	&	PositionTo)

AS	DatePositionKey

Resident	LinkTable;

The	resident	load	for	the	Employee	table	would	be	as	follows:

EmployeeSalary_1:

Load

*,

Autonumber(EmpID	&	'-'	&	DateInToPosition)AS	DateInToPositionKey

Resident

EmployeeSalary;

DROP	TABLE	EmployeeSalary;

On	loading	the	script,	the	resulting	Data	model	would	be	like	this:



	



See	also
Using	the	Previous()	function	to	identify	the	latest	record	read	for	a
dimensional	value



Using	the	Previous()	function	to
identify	the	latest	record	for	a
dimensional	value
In	a	line-level	table,	there	are	multiple	records	stored	for	a	single	dimensional
value.	For	example,	an	Order	Line	table	will	have	multiple	lines	for	the	same
OrderID.	Business	requirements	may	warrant	us	to	only	consider	the	first	or	the
latest	line	for	each	order.	This	can	be	done	using	the	Previous()	function
available	in	Qlik	Sense.



Getting	ready
For	the	sake	of	continuity,	we	will	make	use	of	the	same	script	and	application	as
in	the	previous	recipe.	We	will	determine	the	most	recent	position	for	any
employee	during	his	or	her	tenure	within	the	organization.



How	to	do	it…
1.	 Open	the	data	load	editor.	Change	the	name	of	the	EmployeeInt	table	in	the

script	to	EmployeeIntTemp.
2.	 Insert	the	following	lines	of	code	after	the	EmployeeIntTemp	table.	If	you

are	copying	and	pasting	the	code	in	the	data	load	editor,	make	sure	that	the
single	quotes	are	copied	in	a	proper	format:

EmployeeInt:

LOAD	*,

if([EmployeeID]=	previous([EmployeeID]),'No','Yes')	AS	

LatestRecordFlag

RESIDENT	EmployeeIntTemp

ORDER	BY	[EmployeeID]	ASC,	PositionFrom	DESC;

DROP	TABLE	EmployeeIntTemp;

Save	and	load	the	script.
Add	the	field	LatestRecordFlag	in	the	Table	object	we	created	in	the	previous

recipe.
Under	Sorting,	make	sure	that	PositionFrom	is	promoted	to	the	top.	Switch

off	the	Auto	sorting	feature	for	PositionFrom.	No	sorting	options	should	be
selected	as	this	will	then	show	the	PositionFrom	date	in	the	load	order.
The	table	would	look	like	this:	

	
Select	employee	Susan	Sayce.	We	can	see	that	there	are	two	positions

associated	with	Susan.	If	we	select	the	LatestRecordFlag	value	as	Yes,	it	will
only	show	the	latest	position	for	Susan:	HR	Director.



How	it	works…
The	LatestRecordFlag	can	be	used	in	calculations	to	determine	the	most	recent
position	of	any	employee.	In	our	script,	we	create	the	LatestRecordFlag	using
the	Previous()	function.	The	Previous()	function	basically	parses	the
EmployeeID	column.	If	the	current	record	that	is	being	read	has	the	same
EmployeeID	value	as	the	previous	record,	then	it	is	flagged	as	No	or	else	Yes.

The	ordering	of	the	fields	plays	an	important	role	here.	Because	I	wanted	to
determine	the	latest	position	for	the	employee,	the	field	PositionFrom	is
arranged	in	descending	order.



There's	more…
We	can	also	make	use	of	the	Peek()	function	in	the	preceding	script.	In	our
example,	both	Peek()	and	Previous()	would	yield	the	same	result.	However,
Peek()	is	more	effective	when	the	user	is	targeting	a	field	which	has	not
previously	loaded	in	the	table	or	if	the	user	wants	to	target	a	specific	row.	The
Previous()	function	is	more	effective	when	the	user	wants	to	compare	the
current	value	with	the	previous	value	for	the	field	in	the	input	table.



See	also
Using	the	Peek()	function	to	create	a	Trial	Balance	sheet



Using	the	NetworkDays()	function	to
calculate	the	working	days	in	a
calendar	month
One	of	the	KPIs	that	companies	often	concentrate	on	is	the	average	sales	in	a
month.	The	average	sales	are	calculated	by	dividing	the	total	sales	by	the	number
of	working	days	in	a	month.

Every	month	has	a	different	number	of	working	days.	While	calculating	the
number	of	working	days	for	the	current	month,	we	only	need	to	consider	the
days	passed	in	the	month	and	not	the	total	days	of	the	month	in	order	to	calculate
the	actual	working	days.

In	order	to	arrive	at	the	exact	number	of	working	days	in	a	month,	we	need	to
exclude	all	the	Fridays	and	Saturdays	as	well	as	the	public	and	bank	holidays
from	our	calculations.	The	Networkdays()	function	helps	us	to	achieve	this.



Getting	ready
For	this	exercise,	we	first	need	to	prepare	a	list	of	all	public	holidays	either	in
Excel	or	inline	in	the	Qlik	Sense	script.



How	to	do	it…
1.	 Copy	and	paste	the	following	part	of	the	script	in	the	data	load	editor.	This

is	a	list	of	public	holidays	for	2014	and	2015:

HolidayTmp:

LOAD	DATE(Date#(	Date,'DD/MM/YYYY'))	as	Date	INLINE	[

Date

01/01/2015

03/04/2015

06/04/2015

04/05/2015

25/05/2015

31/08/2015

25/12/2015

28/12/2015

01/01/2014

18/04/2014

21/04/2014

05/05/2014

26/05/2014

25/08/2014

25/12/2014

26/12/2014

];

2.	 Next,	we	will	store	the	list	of	public	holidays	in	a	variable	inside	the	script:

ConcatTmp:

LOAD	concat(chr(39)	&	Date	&	chr(39),',')	AS	HolidayDates

RESIDENT	HolidayTmp;

LET	vPublicHolidays	=	FieldValue('HolidayDates',1);

LET	vCurMonth=month(today());

3.	 Copy	and	paste	the	following	fact	table.	Insert	the	last	of	the	PostingDates
in	your	table	as	today's	date	and	put	a	sales	figure	against	it.	This	is	to
demonstrate	the	use	of	today()	in	the	the	WorkingDays	calculation:

SalesTmp:

LOAD	DATE(Date#(	PostingDate,'DD/MM/YYYY'))	as	PostingDate,	

Sales	INLINE	[

PostingDate,	Sales

05/08/2014,	5000

04/09/2014,522

24/10/2014,400



15/11/2014,5000

24/12/2014,	822

29/12/2014,	633

02/01/2015,	1000

02/02/2015,	2000

25/03/2015,2200

25/04/2015,266

09/05/2015,	3000

18/05/2015,	4000

15/06/2015,5000

22/07/2015,456

08/09/2015,4200

26/10/2015,1875

];

4.	 Next,	calculate	the	number	of	working	days:

Sales:

LOAD	*,

Month(PostingDate)	as	Month,

MonthName(PostingDate)	AS	MonthYear,	

IF(Year(PostingDate)=Year(TODAY())	AND	

Month(PostingDate)=MONTH(TODAY()),	

NETWORKDAYS(MONTHSTART(today()),(Today()),	$(vPublicHolidays)),	

NETWORKDAYS(MONTHSTART(PostingDate),	MonthEnd(PostingDate),

$(vPublicHolidays)))	AS	WorkingDays	RESIDENT

SalesTmp;

DROP	table	SalesTmp;	

		DROP	table	HolidayTmp;

5.	 Load	the	script.
6.	 On	the	Qlik	Sense	sheet,	create	a	table	object	and	name	it	Average	Monthly

Sales.
7.	 Add	MonthYear	and	WorkingDays	as	dimensions.
8.	 Add	the	following	measure	and	label	it	as	Avg	Sales:

Sum(Sales)/WorkingDays

9.	 Set	the	number	formatting	for	Avg	Sales	to	Money.
10.	 Under	Sorting,	make	sure	that	the	MonthYear	field	is	promoted	to	the	top.
11.	 Go	to	Appearance	|	Presentation	and	switch	off	Totals.
12.	 The	final	table	object	should	look	like	this:



	



How	it	works…
The	Concat	function	stores	the	aggregated	string	concatenation	of	all	the	holiday
dates.	These	holiday	dates	are	stored	in	a	variable	vPublicHolidays,	which	is
further	used	in	the	Networkdays()	function.

The	Networkdays()	function	has	three	parameters.	The	first	two	parameters
define	the	range	of	dates	to	consider.	If	the	PostingDate	date	lies	in	the	current
month,	the	range	of	dates	is	defined	by	the	first	day	of	the	month	and	today.
From	this	range,	we	exclude	the	non-working	days	Saturdays,	Sundays,	and
public	holidays.

If	the	posting	date	is	in	a	month	prior	to	the	current	month,	the	first	and	the	last
day	of	said	month	determine	the	range	of	the	days	for	calculating	the	working
days.



See	also
Using	the	Concat()	function	to	display	a	string	of	field	values	as	a
dimension



Using	the	Concat()	function	to	display
a	string	of	field	values	as	a	dimension
A	line-level	table	is	normally	the	most	granular	data	in	a	Data	model.	For
example,	consider	an	Order	Line	table.	The	orders	for	each	customer	are	stored
one	row	per	product	line,	and	we	have	corresponding	costs	for	each	product	on
each	line.	When	we	generate	a	Table	report	for	such	data,	we	will	have	a
separate	line	for	each	product	which	in	itself	is	not	wrong.	But	recently	a
customer	asked	me	to	initiate	an	export	for	the	Table	report	in	such	a	way	that	all
the	products	for	a	particular	order	are	contained	in	a	single	cell	and	the	sales
column	should	show	the	aggregated	figure	for	all	the	products	under	OrderID.
To	tackle	this	requirement,	I	created	a	calculated	dimension	using	the	Concat
function.	The	process	is	explained	in	the	following	recipe.



Getting	ready
1.	 Create	a	new	Qlik	Sense	application.
2.	 Add	the	following	INLINE	table	that	contains	the	Order	Line	table	details:

Orders:

LOAD	*	INLINE	[

				Customer,OrderID,Product,Cost

				1,201,Chain,20

				1,201,Seat,40

				1,201,Mudguard,50

				2,202,Gloves,15

				2,202,Basket,60

				3,203,Helmet,70

				];

3.	 Load	the	data	and	save	the	file.	Open	App	overview	by	clicking	on	the

Navigation	dropdown	 	in	the	top-left	corner.



How	to	do	it…
1.	 Create	a	new	sheet.
2.	 Drag	the	Table	object	from	the	left-hand	side	Assets	panel	on	to	the	sheet.

Name	it	Sales	by	Order.
3.	 Add	OrderID	and	Customer	as	dimensions.
4.	 Add	the	following	as	a	third,	calculated	dimension	and	label	it	Products:

=AGGR(Concat(DISTINCT	Product,','),OrderID)

5.	 Add	the	following	expression	as	the	measure.	Label	it	Total	Sales:

Sum(Cost)

6.	 Click	on	Save	and	click	on	 .
7.	 The	resulting	table	on	the	screen	will	look	like	this:

	
8.	 As	you	can	see,	all	the	products	for	a	particular	OrderID	value	are	stringed

together	in	a	single	cell	and	the	sales	figures	are	the	aggregated	figures	for
each	OrderID	value.



How	it	works…
The	Concat()	function	gives	us	the	aggregated	string	concatenation	of	all	the
product	values	separated	by	the	,	delimiter.	The	Concat()	function	is	an
aggregation	function	and	hence	needs	to	be	used	with	AGGR	in	order	to	be	used	as
a	dimension.	For	the	sake	of	our	dimension,	the	products	are	grouped	by	the
OrderID.

The	same	functionality	could	have	been	achieved	by	defining	products	within	a
calculation	in	a	measure	as	follows:

Concat(DISTINCT	Product,',')

But	by	doing	so,	we	won't	be	able	to	select	the	products	for	a	particular	OrderID
value	inside	the	table.

When	we	use	the	calculated	dimension,	we	get	the	advantage	of	selecting	all	the
products	for	the	OrderID	value	in	a	single	go	by	selecting	a	cell	in	the	products
column.



There's	more…
The	Concat()	function	can	also	be	used	in	the	script	along	with	the	Group	By
clause.



See	also
Using	the	Fractile()	function	to	generate	quartiles



Using	the	Minstring()	function	to
calculate	the	age	of	the	oldest	case	in
a	queue
Support	centers	for	any	organization,	log	several	customer	cases	during	the	day.
These	cases	are	sometimes	tagged	with	a	specific	status	such	as	contact,	review,
and	so	on.	Each	case	goes	through	different	statuses	in	the	workflow	until	it
reaches	closed	or	sign	off	in	the	queue.	The	following	example	calculates	the
number	of	cases	in	each	status	of	the	workflow	and	then	makes	use	of	the
Minstring()	function	to	calculate	the	number	of	days	passed	since	the	oldest
case	logged	for	a	particular	status.



Getting	ready
Load	the	following	script	which	gives	information	on	the	cases	logged	at	a	debt
collection	agency:

LET	vToday=num(today());

Case:

LOAD		CaseID	,DATE(Date#(	DateLogged,'DD/MM/YYYY'))	as	DateLogged,

Status	INLINE	[

CaseID,DateLogged,Status

101,01/01/2002,Advice

101,25/04/2002,Contact

101,21/06/2003,Creditors	Meeting

101,24/06/2003,Draft	Allocation

101,30/06/2003,Sign	off

102,18/10/2009,Contact

102,28/10/2009,Advice

102,11/02/2010,Creditors	Meeting

102,20/03/2010,Draft	Allocation

102,30/06/2010,Review

103,11/02/2013,New	Business

103,19/06/2013,Draft	Allocation

104,30/06/2010,New	Business

105,30/06/2010,Contact

105,11/02/2013,New	Business

106,19/06/2013,Drafting	

106,30/06/2010,Advice

];



How	to	do	it…
1.	 Drag	the	Table	object	onto	the	sheet	from	the	Assets	panel	on	the	left.

Name	it	Oldest	case	in	Queue	(in	days).
2.	 Add	Status	as	the	dimension.
3.	 Next,	add	the	following	expression	as	the	first	measure	and	label	it	Case

Volume:

Count(CaseID)

Add	the	following	expression	as	the	second	measure	and	label	it	Oldest	item
in	Queue	(in	Days):

Num($(vToday)-(MinString({$<DateLogged=>}	[DateLogged])),'#,##0')

Under	Sorting,	promote	Status	to	the	top.
Under	Appearance,	click	on	Presentation	and	uncheck	Totals.
Click	on	 	when	finished.
The	resulting	table	should	look	like	the	following	screenshot.	The	figures	you

get	for	the	Oldest	Item	in	Queue	table	may	be	different,	as	the	calculation	is
based	on	today's	date,	which	will	be	different	in	your	case:	

	



How	it	works…
Today's	date	is	stored	in	a	number	format	in	the	variable	vToday().	The
MinString()	function	finds	the	oldest	value	in	the	DateLogged	field	from	the
total	number	of	cases	for	each	status.	Next,	we	take	a	difference	between
Today()	and	the	minimum	date	for	each	status	to	get	the	number	of	days	for	the
oldest	case.



There's	more…
By	making	use	of	the	Peek()	and	Previous()	functions	and	using	the	correct
sort	order	during	load,	we	can	determine	the	case	volume	for	each	change	of
status.	For	example,	count	of	cases	that	went	from	advice	to	contact,	contact	to
creditors	meeting,	and	so	on.



See	also
Using	the	RangeSum()	function	to	plot	cumulative	figures	in	trendline
charts



Using	the	Rangesum()	function	to	plot
cumulative	figures	in	trendline	charts
The	charts	in	Qlik	Sense	don't	provide	the	user	with	the	in-built	functionality	to
calculate	the	cumulative	totals,	as	is	the	case	with	QlikView.	In	order	to	achieve
the	cumulative	totals	in	a	trendline	chart,	we	make	use	of	the	RangeSum()
function.



Getting	ready
Load	the	following	script	that	gives	information	of	monthly	sales	figures	for	2
years:

Sales:

LOAD	

Month(Date#(Month,'MMM'))	as	Month,

Year,

Sales

INLINE	[

Month,Year,Sales

Jan,2014,1000

Feb,2014,1520

Mar,2014,1600

Apr,2014,3000

May,2014,2500

Jun,2014,4500

Jul,2014,6000

Aug,2014,6500

Sep,2014,7800

Oct,2014,6800

Nov,2014,3000

Dec,2014,2500

Jan,2015,750

Feb,2015,1200

Mar,2015,800

Apr,2015,600

May,2015,2100

Jun,2015,3500

Jul,2015,4700

];



How	to	do	it…
1.	 Click	on	App	overview	under	the	Navigation	dropdown	and	create	a	new

sheet.

2.	 Drag	across	the	 	object	from	the	Assets	panel	on	the	sheet	and
name	it	Cumulative	Sales.

3.	 Add	Year	and	Month	as	the	dimensions.
4.	 Next,	add	the	following	measure	and	label	it	Cumulative	Sales:

RANGESUM(ABOVE(TOTAL	Sum(Sales),0,	ROWNO(TOTAL)))

Save	the	application	and	click	on	 .
The	final	trendline	chart	should	look	like	the	following:	

	



How	it	works…
There	are	three	arguments	defined	in	the	syntax	used	for	the	Above()	function:

Expression	=	Sum(Sales)

Offset	=	'0'

Since	this	is	zero,	the	function	evaluates	the	expression	on	the	current	row.
Count	=	RowNo(Total)

The	third	argument	tells	the	Above()	function	to	evaluate	the	expression
over	a	range	of	values.	In	this	case,	because	we	are	specifying	a	total	inside
the	Rowno()	function,	the	result	would	be	the	number	of	the	row	the	user	is
currently	on.

The	Above()	function	will	return	a	range	of	values.	Hence	we	will	use	the
RangeSum()	function	to	sum	up	all	the	values.



See	also
Using	the	FirstSortedValue()	function	to	identify	the	median	in	a	quartile
range



Using	the	Fractile()	function	to
generate	quartiles
Qlik	Sense	provides	a	host	of	statistical	functions	that	can	be	put	to	effective	use
based	on	requirements	in	user	reports.	At	a	recent	implementation,	one	of	the
requirements	that	popped	out	was	to	divide	the	data	values	into	four	quartiles.
Quartiles	are	equivalent	to	percentiles	which	divide	the	data	into	four	groups.

The	first	quartile	is	determined	by	every	value	which	is	equal	to	and	less	than	the
25th	percentile.	The	second	quartile	is	determined	by	every	value	which	is
between	the	25th	and	the	50th	percentile.	The	third	quartile	is	determined	by
every	value	which	is	between	the	50th	and	the	75th	percentile.	The	fourth
quartile	will	be	all	the	data	values	above	and	beyond	the	value	of	75th	percentile.

In	order	to	generate	quartiles	in	Qlik	Sense,	we	make	use	of	the	Fractile()
function.	The	following	recipe	explains	the	process.



Getting	ready
For	the	sake	of	this	recipe	we	create	a	hypothetical	situation	and	make	use	of	an
inline	data	load	which	gives	a	case	level	information	for	an	insurance	company.
Load	the	following	script	in	Qlik	Sense:

Case:

LOAD	*	INLINE	[

CaseID,Value,Status

101,1500,Active

102,1800,Active

103,800,Closed

104,2590,Closed

105,3500,Closed

106,1200,Active

107,5600,Active

108,8000,Closed

109,5960,Closed

110,5000,Active

111,4000,Active

112,2500,Active

];



How	to	do	it…
1.	 Click	on	App	overview	under	the	Navigation	dropdown	and	create	a	new

sheet.

2.	 Enter	the	Edit	mode	by	clicking	on	 .
3.	 Drag	the	Table	object	on	to	the	sheet.
4.	 Add	the	following	calculated	dimension	and	label	it	Quartile:

=If	(Value	<=	Fractile	(TOTAL	Value,	0.25),	'Quartile	1',

	If	(Value	<=	Fractile	(TOTAL	Value,	0.50),	'Quartile	2',

	If	(Value	<=	Fractile	(TOTAL	Value,	0.75),'Quartile	3',

	'Quartile	4')))

5.	 Add	second	dimension	CaseID.
6.	 Add	the	following	measure	and	label	it	Value:

Sum(Value)

7.	 Under	Sorting,	promote	Value	to	the	top	and	sort	it	as	numeric	descending.
8.	 The	resultant	table	would	be	as	follows:



	
9.	 As	seen	in	the	preceding	screenshot,	each	CaseID	value	is	now	grouped

under	the	Quartile.



How	it	works…
The	Fractile	()	function	finds	the	value	corresponding	to	the	stated	quartile	in
the	range	of	the	data	values	given	by	the	expression.	For	example,	a	Fractile
(TOTAL	Value,	0.25)	works	in	the	following	way.

A	value	corresponding	to	the	25th	percentile	is	calculated.	The	total	qualifier
disregards	the	chart	dimensions.

In	our	calculated	dimension,	every	CaseID	having	the	value	below	the	25th
percentile	mark	is	tagged	as	Quartile	1,	between	25th	and	50th	as	Quartile	2,
and	so	on.



There's	more…
We	can	make	use	of	a	distinct	qualifier	inside	the	Fractile()	function.	In	such	a
case,	only	the	unique	values	of	the	field	Value	are	evaluated.



See	also
Using	the	FirstSortedValue()	function	to	identify	the	median	in	a	quartile
range



Using	the	FirstSortedValue()	function
to	identify	the	median	in	a	quartile
range
Our	next	task	is	to	find	a	claim	corresponding	to	the	median	value	in	each
quartile.	A	median	is	nothing	but	a	value	corresponding	to	the	50th	percentile.
We	can	achieve	this	using	the	FirstSortedvalue()	and	median()	functions.



Getting	ready
Continue	with	the	same	application	as	in	the	preceding	recipe.



How	to	do	it…
1.	 Go	to	the	Edit	mode	by	clicking	on	 .
2.	 Select	the	table	we	created	just	now	in	the	preceding	recipe.
3.	 Edit	the	CaseID	dimension	and	put	in	the	following	calculation:

=if(Match(CaseID,

'$(=FirstSortedValue(distinct{<Value={"<=$(=Median({<Value=	

{'>=$(=fractile(Value,	0))<=$(=Fractile(Value,	0.25))'}>}	

Value))"}>}	CaseID,	-Value))',

'$(=FirstSortedValue(distinct{<Value={"<=$(=Median({<Value=	

{'>$(=fractile(Value,	0.25))<=$(=fractile(Value,	0.5))'}>}	

Value))"}>}	CaseID,	-Value))',

'$(=FirstSortedValue(distinct{<Value={"<=$(=Median({<Value=	

{'>$(=fractile(Value,	0.5))<=$(=fractile(Value,	0.75))'}>}	

Value))"}>}	CaseID,	-Value))',

'$(=FirstSortedValue(distinct{<Value={"<=$(=Median({<Value=	

{'>$(=fractile(Value,	0.75))<=$(=fractile(Value,	1))'}>}	

Value))"}>}	CaseID,	-Value))'

),

CaseID,

Null()

)

Uncheck	Show	Null	Values	for	CaseID.
The	resultant	table	will	look	like	this:	

	
As	you	can	see,	every	quartile	is	now	showing	only	the	claim	corresponding	to

the	median	value	in	each	quartile.



How	it	works…
The	calculated	dimension	for	CaseID	gives	us	the	claims	corresponding	to	the
median	values	in	each	quartile.	As	you	can	see,	a	Match()	function	is	being	used
to	match	the	CaseID	with	each	of	the	four	expressions	within.

Let's	decipher	the	first	expression	inside	the	Match()	function:

'$(=FirstSortedValue(distinct

{<Value={"<=$(=Median({<Value={'>=$(=fractile(Value,	0))

<=$(=fractile(Value,	0.25))'}>}	Value))"}>}	CaseID,	-Value))'

The	details	of	the	expressions	are	as	follows:

The	innermost	set	gives	us	the	range	of	values	which	are	between	the	0th
quartile	value	and	the	25th	Quartile	value
The	Median()	function	then	gives	us	the	value	which	lies	at	the	median	of
this	range
The	FirstSortedvalue()	returns	the	value	of	the	output	field	(CaseID)
based	on	the	sorted	values	of	the	value	field

In	situations	where	the	number	of	claims	in	any	quartile	is	an	even	number,	there
will	be	two	claims	which	will	correspond	to	the	median	values.	In	such	a
scenario,	we	want	to	select	only	the	claim	which	is	higher	in	the	sorting	order.
Hence,	we	use	a	–Value	as	the	sort	weight.



There's	more…
Similar	to	medians,	we	can	derive	the	quartiles	within	quartiles	using	the
Fractile()	function.



See	also
Using	the	Fractile()	function	to	generate	quartiles



Using	the	Declare	and	Derive
functions	to	generate	Calendar	fields
Defining	a	Master	Calendar	in	Qlik	Sense	is	a	common	requirement	and	can	be
done	using	the	Time	and	Date	functions.	With	Sense,	Qlik	has	introduced	the
Declare	and	Derive	functions,	which	make	it	easier	to	create	the	Calendar
definition.	This	is	still	not	commonly	used,	as	most	Qlik	Sense	developers	stick
to	their	old	Calendar	scripts,	and	there	is	nothing	wrong	with	that.	However,
these	functions	are	worth	exploring.



Getting	ready
Load	the	following	part	of	the	script	that	gives	information	on	organization	sales
into	the	Qlik	Sense	application:

OrgSales:

LOAD	Product,	OrderNo	,DATE(Date#(	InvoiceDate,'DD/MM/YYYY'))	as	

InvoiceDate,

Sales	INLINE	[

InvoiceDate,Product,OrderNo,Sales

1/1/2013,Chains,101,5500

8/2/2014,Seats,101,4800

3/3/2014,Brake	Oil,102,6500

9/5/2015,Helmets,104,4500

];



How	to	do	it…
Using	the	INLINE	table	specified	in	the	preceding	code,	we	will	generate	a
Master	Calendar.	We	will	generate	the	fields	and	Group	definition	using	the
Declare	function.

1.	 In	the	data	load	editor,	type	in	the	following	script:

Calendar:

Declare	Field	Definition	Tagged	'$date'

Parameters

				first_month_of_year=1

	Fields

							Year($1)		as	Year	Tagged	'$year',

								Month($1)	as	Month	Tagged	'$month',

								Date($1)	as	Date	Tagged	'$date',

								Week($1,first_month_of_year)	as	Week	Tagged	'$week'

				Groups

				Year,Month,Date	type	collection	as	YearMonthDate;

2.	 Once	the	Calendar	definition	is	created,	it	needs	to	be	linked	back	to	the
date	field	using	the	Derive	function.	Insert	the	following	statement	in	the
script	and	reload	the	application:

Derive	Fields	from	Fields	InvoiceDate	using	Calendar;

On	a	new	sheet,	click	on	edit	and	then	on	the	Fields	tab	 on	the	Assets
panel	to	the	left.	At	the	bottom	of	the	panel	you	will	see	there	is	a	new	tab	for	the
time	and	date	functions.	Once	you	expand	this,	you	should	be	able	to	see	all	the
fields	we	created	under	the	Declare	statement.



How	it	works…
The	Declare	function	is	used	to	create	the	Calendar	definition	and	tag	it	to
$date.	The	Calendar	definition	is	then	used	to	derive	related	dimensions	such	as
Year,	Month,	Week,	and	so	on.

The	parameter	first_month_of_year	indicates	what	the	first	month	of	the	year
should	be.	It	contains	comma-separated	values,	but	it	is	optional	and	can	be
skipped	if	needed.

Next,	we	define	the	fields	we	want	to	generate	in	the	Calendar	table.	The	$1
represents	the	data	field	from	which	the	date	field	will	be	generated,	which	is
InvoiceDate	in	our	case.

When	the	field	definition	is	used,	a	comma-separated	list	of	fields	is	generated.
The	Derive	function	is	used	in	order	to	generate	the	derived	fields	such	as	Year,
Month,	and	so	on	from	the	InvoiceDate	field.	The	groups	are	defined	at	the	end
of	the	script	that	creates	a	drilldown	group	for	Year,	Month,	and	Date.



There's	more…
The	Derive	function	can	be	used	to	link	back	the	Calendar	to	multiple	dates
separated	by	a	comma.	For	example,	"derive	fields	from	fields	InvoiceDate,
ShippingDate	using	Calendar".

Similar	to	the	resident	load,	a	Calendar	table	can	be	loaded	again	in	the	script.
We	can	change	the	parameter	value	of	the	first	month	of	the	year	to	3.	The
earlier	value	of	the	parameter	is	overridden	by	doing	this.	This	is	achieved	with
the	following	commands:

MyCalendar:

DECLARE	FIELD	DEFINITION	USING	Calendar	WITH	first_month_of_year=3;		

DERIVE	FIELDS	FROM	FIELDS	InvoiceDate	USING	MyCalendar;



See	also
Using	the	Peek()	function	to	create	a	currency	Exchange	Rate	Calendar



Setting	up	a	moving	annual	total
figure
A	moving	annual	total	(MAT)	is	the	total	value	of	a	variable,	such	as	sales
figures	for	a	product,	over	the	course	of	the	previous	12	months.	This	is	a	rolling
yearly	sum,	so	it	changes	at	the	end	of	each	month	with	data	from	the	new
month	added	to	the	total	and	data	from	the	first	month	of	the	period	taken	away
read	more	about	moving	annual	total	(MAT),	at
http://www.pmlive.com/intelligence/healthcare_glossary_211509/Terms/m/moving_annual_total_mat

http://www.pmlive.com/intelligence/healthcare_glossary_211509/Terms/m/moving_annual_total_mat


Getting	ready
We	are	going	to	make	use	of	variables	in	this	recipe.	We	will	define	three
variables	in	the	script:	vMonthFormat,	vRolling12Months,	and	vMaxMonth.

Load	the	following	script	into	your	Qlik	Sense	application:

LET	vMonthFormat	=	'MMM-YYYY';

LET	v12MonthsBack	=	'Date(AddMonths(max([MonthYear]),	-	

12),$(vMonthFormat))';

LET	vMaxMonth='Date(max([MonthYear]),$(vMonthFormat))';

Sales:

LOAD

Date(Date#(MonthYear,	'MMMYYYY'),	'MMM-YYYY')	as	MonthYear,

Month(Date#(MonthYear,	'MMMYYYY'))	as	Month,

Year(Date#(MonthYear,	'MMMYYYY'))	as	Year,

Sales	INLINE	[

MonthYear,	Sales

Jan2014,	1000

Feb2014,	1520

Mar2014,	1600

Apr2014,	3000

May2014,	2500

Jun2014,	4500

Jul2014,	6000

Aug2014,	6500

Sep2014,	7800

Oct2014,	6800

Nov2014,	3000

Dec2014,	2500

Jan2015,	750

Feb2015,	1200

Mar2015,	800

Apr2015,	600

May2015,	2100

Jun2015,	3500

Jul2015,	4700

Aug2015,	2100

Sep2015,	3500

Oct2015,	4700

];	



FOR	vMonth	=	0	to	11

MATMonthYear:

LOAD

[MonthYear],

Date(AddMonths([MonthYear],	$(vMonth)),'$(vMonthFormat)')	as	[MAT	

MonthYear]

RESIDENT	Sales

WHERE	AddMonths([MonthYear],	$(vMonth))	<	today()

;

next



How	to	do	it…
1.	 Once	the	data	is	loaded,	open	the	App	overview	window	and	create	a	new

sheet.

2.	 Enter	the	Edit	mode	by	clicking	on	 .

3.	 Drag	across	the	 	object	from	the	Assets	panel	on	the	sheet.
4.	 Name	it	Moving	Annual	Total.
5.	 Add	[MAT	MonthYear]	as	the	dimension.
6.	 Next,	add	the	following	measure	and	label	it	MAT	Sales:

SUM({<[MAT	MonthYear]={">=$(vRolling12Months)<=	

$(vMaxMonth)"}>}Sales)	

Save	the	application	and	click	on	 .

Under	Appearance,	select	the	chart	style	as	 .
Check	the	Show	Data	points.
Switch	on	the	Value	Labels	options	to	show	values	on	each	data	point.
The	final	trendline	chart	should	look	like	this:	

	



How	it	works…
The	Moving	Annual	Total	curve	helps	in	smoothing	out	the	spikes	that	occur	in
a	single	month	by	making	use	of	the	annual	totals.	This	is	achieved	by
calculating	the	rolling	12	months	accumulated	sales	data	for	each	data	point.

We	create	a	MATMonthYear	field.	You	will	notice	that	when	we	select	any
month	and	year	value	in	this	field,	it	associates	the	field	value	to	the	current
MonthYear	and	the	11	MonthYears	prior	to	the	current,	in	the	MonthYear	field.

In	the	MAT	Sales	expression,	we	make	sure	that	the	rolling	12	months	are
always	shown	in	the	chart.	This	is	achieved	by	restricting	the	MATMonthYear
values	shown	in	the	chart	between	the	vRolling12Months	and	the	vMaxMonth
variables.

Selecting	any	MATMonthYear	will	result	in	the	trendline	chart	populating	the
MAT	figures	for	the	selected	month	and	11	months	prior	to	that.



There's	more…
There	is	a	similar	concept	known	as	cumulative	sums,	which	we	discussed	in	the
recipe	Using	the	Rangesum()	function	to	plot	cumulative	figures	in	trendline
charts.	However,	there	is	a	glaring	difference	between	the	two.	While
cumulative	takes	into	consideration	all	the	previous	months	and	years	to	the
current,	a	Moving	Annual	Total	will	always	consider	the	previous	12	months.	In
a	way	it	is	a	rolling	12	month	sum	at	any	given	point	of	time.



See	also
Using	the	Rangesum()	function	to	plot	cumulative	figures	in	trendline
charts



Using	the	For	Each	loop	to	extract
files	from	a	folder
Picture	a	scenario	where	the	month	end	sales	data	in	an	organization	is	stored	in
a	folder	on	the	network	from	where	it	needs	to	be	picked	up	for	reporting
purposes.

Control	statements	such	as	For	Each	next	can	be	used	in	Qlik	Sense	as	an
approach	towards	script	iteration.	The	following	recipe	deals	with	extracting
files	in	Qlik	Sense	from	a	folder,	processing	them	to	create	QVD	files	and	then
transferring	the	source	files	to	another	folder.	In	the	process,	we	will	also	deal
with	the	incremental	update	of	the	QVD.



Getting	ready
This	recipe	requires	the	Legacy	mode	to	be	activated.	The	steps	are	as	follows:

1.	 To	activate	the	Legacy	mode,	open	the	Settings.ini	file	under	C:\Users\
<username>\Documents\Qlik\Sense.

2.	 Change	the	value	of	the	StandardReload	parameter	from	1	to	0.

1.	 For	this	recipe,	we	make	use	of	four	Excel	files:	January.xlsx,
February.xlsx,	March.xlsx,	and	April.xlsx.	These	files	are	provided
with	the	chapter	and	can	be	downloaded	from	the	Packt	Publishing	website.

2.	 Save	the	file	January.xlsx	under	c:\QlikSense.	If	you	are	not	able	to
write	to	this	location,	then	you	may	change	the	storage	location	for	the	file.
Note	that	in	this	case	you	will	have	to	make	relevant	changes	in	the	file
location	paths	for	the	load	script	discussed	in	the	How	to	do	it...	section	for
this	recipe.

3.	 Create	another	folder	named	Processed	inside	the	QlikSense	folder	we
created	in	step	1.	The	path	for	the	folder	would	be
c:\QlikSense\Processed.

4.	 Create	a	third	folder	named	QVD	inside	the	QlikSense	folder	created	in	step
1.	The	path	for	the	folder	would	be	c:\QlikSense\QVD.



How	to	do	it…
1.	 Create	a	new	Qlik	Sense	application.
2.	 Open	the	data	load	editor.
3.	 Load	the	following	script:

For	each	File	in	filelist	('C:\QlikSense\*.xlsx')	

ProdSales:

LOAD

	left(FileBaseName(),18)	AS	ProdSalesFileName,

filename()	as	FileName,

	[Product],

[Sales]

FROM	[$(File)]

(ooxml,	embedded	labels,	table	is	Sheet1)

WHERE	Sales	>250000;

Execute	cmd.exe	/C	move	"$(File)"	"C:\QlikSense\Processed";

next	File

SET	rowCount	=	0;

LET	rowCount	=	NoOfRows('ProdSales');

IF	rowCount	>	0	AND	Alt(FileSize('C:\	QlikSense	

\QVD\ProdSales.QVD'),0)	>	0	THEN

Concatenate(ProdSales)

LOAD	*	FROM	C:\\QlikSense\QVD\ProdSales.QVD	(qvd);

STORE	ProdSales	INTO	C:\QlikSense\QVD\ProdSales.QVD;

ELSE

STORE	ProdSales	INTO	C:\QlikSense\QVD\ProdSales.QVD;

END	IF

DROP	TABLE	ProdSales;

LOAD	*	FROM	C:\QlikSense\QVD\ProdSales.QVD	(qvd);

4.	 Now,	add	the	remaining	three	Excel	files,	that	is,	February.xlsx,
March.xlsx,	and	April.xlsx,	to	the	source	location;	in	the	case	of	this



recipe,	it	is	c:\QlikSense.
5.	 Load	the	script	again.	You	will	notice	that	all	the	files	have	been	processed

and	moved	to	the	processed	folder.	At	the	same	time,	the	new	data	is
appended	to	the	ProdSales.QVD	file.

6.	 In	order	to	test	the	data	loaded	into	the	QVD,	go	to	App	overview	and
create	a	new	sheet.

7.	 Drag	a	table	object	onto	the	sheet.
8.	 Add	ProdSalesFileName	as	the	first	dimension	and	label	it	Month.
9.	 Add	Product	as	second	dimension.
10.	 Add	the	following	expression	and	label	it	as	Sales:

Sum(Sales)

11.	 The	resultant	table	would	look	like	the	following,	with	each	month	showing
records	only	with	Sales	>250000:

	



How	it	works…
The	for	each	next	loop	iterates	through	each	file	in	the	Source	folder	and
processes	it	to	pick	up	records	with	sales	greater	than	250,000.	Once	processed,
the	files	are	transferred	to	the	processed	folder	using	the	command	prompt.

The	if	condition	checks	for	the	row	count	of	the	processed	file.	If	it	is	greater
than	zero	then	the	file	is	concatenated	to	the	existing	ProdSales.QVD	file.	The
LOAD	statement	inside	the	if	condition	has	a	WHERE	not	exists	clause	which
makes	sure	to	append	only	new	files	to	the	QVD.



Using	the	Peek()	function	to	create	a
currency	Exchange	Rate	Calendar
Organizations	dealing	in	multiple	currencies	may	use	a	web	service	to	extract	the
exchange	rates.	They	may	even	store	the	currency	exchange	rates	in	Excel	files
or	sometimes	in	a	database	table.	The	exchange	rates	for	any	currency	may	be
stored	only	for	each	RateStartDate	that	is	for	the	day	when	the	rate	changes	its
value.	However,	for	our	reporting	purposes	we	need	exchange	rates	for	each	day
and	not	just	for	the	day	when	the	rate	changes.	For	this	purpose,	it	is	beneficial
to	create	an	Exchange	Rate	Calendar.



Getting	ready
Create	a	new	Qlik	Sense	application	and	load	the	following	script	into	your	Qlik
Sense	application:

ExchangeRatetemp:

LOAD	FromCurrency,ExchangeRate,

DATE(Date#(RateStartDate,'DD/MM/YYYY'))	as	RateStartDate	INLINE	[

FromCurrency,	ExchangeRate,	RateStartDate

EUR,0.687,01/08/2012

EUR,0.757,02/09/2012

EUR,0.74,08/09/2013

EUR,1.10,24/10/2014

SGD,0.52,01/08/2012

SGD,0.68,27/02/2014

SGD,0.88,28/03/2015

USD,0.75,14/12/2013

USD,0.77,16/01/2014

USD,0.85,26/06/2015

];



How	to	do	it…
We	will	now	generate	the	end	dates	for	each	currency	exchange	rate:

1.	 Load	the	following	script	to	generate	the	RateEndDate	for	each	exchange
rate:

ExchangeRate:

LOAD

FromCurrency,

ExchangeRate,

Date	(RateStartDate)	AS	RateStartDate,

If	(FromCurrency=Peek	(FromCurrency),	Date	(Peek	

(RateStartDate)-1),	Today	())	AS	RateEndDate

RESIDENT

ExchangeRatetemp

ORDER	BY	FromCurrency,	RateStartDate	DESC;

DROP	TABLE	ExchangeRatetemp;

Go	to	the	App	overview	window	and	open	a	new	sheet.

Enter	the	Edit	mode	by	clicking	on	 .
Drag	the	Table	object	onto	the	screen	and	add	all	the	four	dimensions	to	it.

Promote	RateStartDate	to	the	top	of	the	sorting	order	and	set	the	sort	order	as
numeric	ascending.
The	result	would	be	as	follows:	

As	we	can	see,	every	record	for	a	currency	now	has	a	rate	end	date.



We	will	now	use	the	RateStartDate	and	RateEndDate	fields	as	our	base	dates
for	the	Exchange	Rate	Calendar.
Now,	copy	and	paste	the	following	script	after	the	DROP	TABLE

ExchangeRatetemp	statement:

//-------------------------------------------------

//	Generate	calendar	dates

//-------------------------------------------------

LET	ExStartDate	=	Num(Peek('RateStartDate',	-1,	ExchangeRate));

LET	ExEndDate	=	Num(Peek('RateEndDate',	0,	ExchangeRate));

ExchangeRateCalendar:

LOAD

Date($(ExStartDate)	+	RecNo()	-	1)	AS	ExchangeRateDate

AUTOGENERATE

($(ExEndDate)	-	$(	ExStartDate)	+	1);

//--------------------------------------------------

//	INTERVAL	MATCH	JOIN	the	month	records	to	the	calendar	//	table

//--------------------------------------------------

LEFT	JOIN	(ExchangeRateCalendar)

INTERVALMATCH	(ExchangeRateDate)

LOAD

RateStartDate,

RateEndDate

RESIDENT

ExchangeRate;

LEFT	JOIN	(ExchangeRateCalendar)	

LOAD	*	RESIDENT	ExchangeRate;

DROP	TABLE	ExchangeRate;

ExchangeRate:

LOAD

FromCurrency,

ExchangeRateDate,

ExchangeRate

RESIDENT

ExchangeRateCalendar;

DROP	TABLE	ExchangeRateCalendar;

Again	create	a	Table	object	on	the	sheet	and	get	all	the	dimensions	from	the



ExchangeRate	table.
We	will	have	exchange	rates	for	each	of	the	missing	dates	as	well	as	shown	in

the	following	screenshot:	



How	it	works…
The	main	purpose	of	creating	this	exchange	rate	calendar	is	to	tag	the	exchange
rates	to	every	missing	date	in	the	range.

The	initial	data	only	comes	with	the	rate	start	dates.	So	we	create	a	rate	end	date
for	each	exchange	rate	using	the	Peek()	function.	The	Peek()	function	checks
for	the	last	read	record	for	FromCurrency	and	if	it	matches,	it	generates	a	rate
end	date	of	current	RateStartDate	-1.	If	FromCurrency	doesn't	match,	then
the	rate	end	date	is	set	to	today's	date.

Using	these	start	and	end	dates,	the	calendar	is	generated.



There's	more…
The	exchange	rate	calendar	generated	in	the	preceding	recipe	can	be	set	for	a
daily	update	and	stored	in	a	QVD	file	that	can	then	be	used	in	any	Qlik	Sense
application	involving	monetary	analysis.



See	also
Using	the	Peek()	function	to	create	a	Trial	Balance	sheet



Using	the	Peek()	function	to	create	a
Trial	Balance	sheet
A	Trial	Balance	sheet	captures	the	activity	across	different	accounts	of	a
company	with	regards	to	the	opening	and	closing	balances.	The	following	recipe
focuses	on	creation	of	a	trial	balance	sheet	in	Qlik	Sense.



Getting	ready
The	recipe	will	make	use	of	the	TrialBalance.xlsx	file,	which	can	be
downloaded	from	the	Packt	Publishing	website.

Store	the	file	on	your	system	at	the	following	location	C:/QlikSense.



How	to	do	it…
1.	 Create	a	folder	connection	to	the	Trial	Balance.xlsx	file.	Name	it

QlikSenseCookBook	_TB.
2.	 Load	the	data	from	the	TrialBalance.xlsx	file	in	the	Qlik	Sense	file.	We

need	to	make	use	of	the	cross	table	functionality	to	load	the	data	in	a	proper
format:

Let	vMaxMonth=Max(Month);

TrialBalancetemp:

CrossTable(Month,	Amount,	4)

LOAD	[Company	Number],

		[Account	Number],

		[Year],

				Forwarded,

		[January],

		[February],

		[March],

		[April],

		[May],

		[June],

		[July],

		[August],

		[September],

		[October],

		[November],

		[December]

FROM	[lib://QlikSenseCookBook_TB/Trial	Balance.xlsx]

(ooxml,	embedded	labels,	table	is	Sheet1);

3.	 Next,	we	will	generate	the	Month	and	the	MonthYear	field	in	a	resident	load.
Copy	and	paste	the	following	script:

TrialBalancetemp1:

NoConcatenate	LOAD

[Company	Number],

[Account	Number],

	Forwarded,

Year,	

Month(Date#(Month,'MMM'))	as	Month,

Date(MakeDate(Year,	Month(Date#(Month,'MMM'))),	'MMM	YYYY')	as	

MonthYear,

Amount

Resident	TrialBalancetemp;



DROP	Table	TrialBalancetemp;

4.	 The	final	step	is	to	create	the	Opening	Balance	and	Closing	Balance
fields	using	the	Peek()	function.	Copy	and	paste	the	following	script	in	the
editor:

TrialBalance:

		NoConcatenate	LOAD

		CompanyAccountKey,

		[Company	Number],

		[Account	Number],

		MonthYear,

		Year,

		Month,

		Amount,

		if(Rowno()	=	1	OR	CompanyAccountKey	<>	

Peek(CompanyAccountKey),	Forwarded,	Peek(Closing))	as	Opening,

						if(Rowno()	=	1	OR	CompanyAccountKey	<>	

Peek(CompanyAccountKey),	Forwarded	+	Amount,	Peek(Closing)	+	

Amount)	as	Closing

		;

		NoConcatenate	LOAD

		[Company	Number]	&	'_'	&	[Account	Number]	as	

CompanyAccountKey,	

		[Company	Number],

		[Account	Number],

		Year,	

		Month,

		MonthYear,

		Forwarded,

		Amount

		Resident	TrialBalancetemp1

		Order	By	[Company	Number],	[Account	Number],	MonthYear;

		DROP	Table	TrialBalancetemp1;

5.	 Load	the	data	and	save	the	file.	Open	App	overview	by	clicking	on	the

Navigation	dropdown	 	at	the	top-left	corner.
6.	 Add	the	Table	object	to	the	sheet.
7.	 Add	MonthYear,	Company	Number,	and	Account	Number	as

dimensions.
8.	 Next,	we	will	add	the	expressions	for	measures.	We	specify	a	range	of

months	in	the	set	analysis	expression.	When	we	define	the	range,	it	is
enclosed	within	double	quotes	("	").	If	you	try	to	copy	this	expression	and
paste	it	in	the	Qlik	Sense	expression	editor,	sometimes	the	double	quotes



are	not	copied	in	the	correct	format.	If	the	format	for	the	quotes	is	incorrect,
the	vMaxMonth	variable	is	highlighted	in	purple.	In	this	case,	the	user	must
make	sure	that	a	proper	format	of	double	quotes	is	in	place.

9.	 Add	the	first	expression	to	the	table	and	label	it	Opening:

Sum({<Month={"<=$(vMaxMonth)"}>}	Opening)

10.	 Add	the	second	expression	to	the	table	and	label	it	Amount:

Sum({<Month={"<=$(vMaxMonth)"}>}	Amount)

11.	 Add	the	third	expression	to	the	table	and	label	it	Closing:

Sum({<Month={"<=$(vMaxMonth)"}>}	Closing)

12.	 Under	Sorting,	promote	Account	Number	to	the	top	and	set	the	sort	order
as	numerically	ascending.

13.	 Promote	Company	Number	to	the	second	position	in	sorting	and	set	the
sort	order	as	numerically	ascending.

14.	 The	final	table	report	will	look	like	this:

	



How	it	works…
The	script	uses	a	rowno()	function	and	a	Peek()	function	to	calculate	the
Opening	and	Closing	balances.

The	rowno()	function	determines	the	position	of	the	current	row.	If	we	are	at	the
first	row,	then	the	Forwarded	Amount	is	taken	as	the	opening	balance.	If	the
company	and	account	have	changed,	then	we	use	the	Peek()	function	to
determine	the	previous	closing	balance,	which	is	taken	as	the	opening	balance.

Similarly,	if	we	are	at	the	first	row,	then	the	Forwarded	Amount	+	Amount
added	for	the	particular	month,	is	taken	as	the	closing	balance.	If	the	company
and	account	have	changed,	then	we	use	the	Peek()	function	to	determine	the
previous	closing	balance	and	add	this	value	to	the	amount	to	get	the	final	closing
balance.



See	also
Using	the	Peek()	function	to	create	a	currency	Exchange	Rate	Calendar



Chapter	6.	Set	Analysis
In	this	chapter,	we	will	focus	on	the	concept	of	Set	Analysis	and	its	use	in	Qlik
Sense.	We	will	cover	the	following	topics:

Cracking	the	syntax	for	Set	Analysis
Using	flags	in	Set	Analysis
Using	the	=	sign	with	variables	in	Set	Analysis
Point	in	time	using	Set	Analysis
Using	comparison	sets	in	Set	Analysis
Using	embedded	functions	in	Set	Analysis
Creating	a	multi-measure	expression	in	Set	Analysis
Using	search	strings	inside	a	set	modifier
Capturing	a	list	of	field	values	using	a	concat()	function	in	Set	Analysis
Using	the	element	functions	P()	and	E()	in	Set	Analysis



Introduction
I	will	say	it	outright	that	Set	Analysis	is	one	of	the	most	important	technical
features	of	Qlik	solutions.	It	allows	you	to	do	things	dynamically	that	just	won't
be	possible	with	the	default	selections	you	have	made.	Set	analysis	can	be
termed	as	Selection	analysis.	The	user	tells	Qlik	Sense	what	set	of	records	need
to	be	picked	for	calculation	which	is	similar	to	making	a	selection	from	a	Filter
pane	or	active	objects.	The	only	difference	is	that	you	define	the	selection	inside
the	calculation.	So	that	the	expression	can	still	look	at	the	records	you	specified
inside	the	Set	Analysis	expression	even	if	you	clear	all	the	default	selections.



Cracking	the	syntax	for	Set	Analysis
Set	Analysis	is	a	very	powerful	concept	in	Qlik	Sense.	In	very	simple	terms,
each	Set	contains	a	"group"	of	selected	dimensional	values.	The	sets	allow	the
users	to	create	independent	selections,	other	than	the	one	being	used	in	the	active
Qlik	Sense	objects.	The	aggregations	inside	the	Set	are	compared	with	current
selections	to	get	the	desired	results.

Note

Any	set	that	has	been	created	in	Qlik	Sense	only	alters	the	context	of	the
expression	that	uses	it.	Unless	they	are	referencing	label	names	inside	the	same
visualization,	all	expressions	using	the	set	syntax	are	independent	of	each	other.
As	such,	basic	expressions	not	using	the	Set	Analysis	will	react	to	the	normal
selections	made	inside	the	Qlik	Sense	document.

A	Set	Analysis	expression	consists	of	three	main	parts:

1.	 Set	identifiers	for	example	$,	1,	1-$,	and	so	on
2.	 Set	operators
3.	 Set	modifiers	(optional)

The	set	expression	is	defined	inside	curly	brackets	{}.	The	set	identifiers	are
separated	from	the	modifiers	by	angular	(<	>)	brackets.

Set	identifiers	define	the	relationship	between	the	set	expression	and	the	field
values	or	the	expression	that	is	being	evaluated	(Qlik,	help).

The	set	modifier	is	made	up	of	one	or	several	field	names,	each	followed	by	a
selection	that	should	be	made	on	the	field	(Qlik,	help).

For	example,	to	compare	the	current	year	versus	last	year	sales	for	three
countries,	we	can	write	the	following	Set	Analysis	expression:

Sum({$<Year={2014,2015},Country={'USA',	'UK',	'GERMANY'}>}Sales)



Getting	ready
Load	the	following	script	that	gives	information	on	the	Sales	values	for	four
customers:

Sales:

LOAD	*	INLINE	[

Customer,Month,Volume,Sales

ABC,Jan,100,7500

DEF,Feb,200,8500

GHI,Mar,400,12000

JKL,Apr,100,4500

];

The	following	recipe	will	explain	the	basics	of	set	expression.	The	aim	is	to
retrieve	customers	with	volumes	greater	than	or	equal	to	200.



How	to	do	it…
1.	 Drag	across	the	Table	object	onto	the	Sheet	from	the	Assets	panel.	Name	it

Set	Analysis.
2.	 Add	Customer	as	Dimension.
3.	 Add	Sum(Sales)	as	the	measure	and	label	it	as	Sales.
4.	 In	order	to	define	the	set,	open	the	Expression	editor	window	by	clicking	on

the	 .	button.
5.	 Start	constructing	the	set	expression	by	first	inserting	the	curly	brackets	{	}

just	before	the	word	Sales.
6.	 Inside	the	curly	bracket,	put	in	the	set	identifier	$.
7.	 Finally,	we	will	define	the	set	modifier.	As	mentioned	earlier,	the	modifiers

are	separated	from	the	identifier	using	angular	brackets	<	>.	Insert	<	>	after
the	$	sign.	Type	in	Volume	=	{}	inside	the	angular	brackets.

8.	 Inside	the	angular	brackets	after	Volume,	type	in	>=200.	Note	the	double
quotes.

9.	 The	final	Set	Analysis	expression	will	look	similar	to	the	following:

Sum({$<Volume	={">=200"}>}	Sales)

Click	 	when	finished.
The	table	should	look	similar	to	the	following:	

	



How	it	works…
The	set	identifier	$	represents	the	records	for	the	current	selection.

The	set	modifier	retrieves	the	records	for	customers	DEF	and	GHI	who	have	the
volume	of	200	and	400	respectively.	It	is	mandatory	to	use	double	quotes	while
specifying	a	range	of	values	in	the	set	modifier.	Hence,	in	our	case	the	value
>=200	is	in	double	quotes.



There's	more…
A	set	modifier	can	consist	of	multiple	field	names	with	selections	made	on	them.
We	can	also	exclude	selections	in	a	particular	field	by	specifying	the	field	name
followed	by	an	=	sign.	For	example,	if	we	want	to	exclude	the	month	selection
then	our	expression	will	become:

Sum({$<Month=,Volume	={">=200"}>}	Sales)



See	also
Creating	a	multi-measure	expression	in	Set	Analysis



Using	flags	in	Set	Analysis
Set	Analysis	expressions	tend	to	become	overly	complex	when	there	are	too
many	comparison	sets	and	conditions	put	in	place.	In	order	to	reduce	the
complexity,	one	can	make	use	of	the	flags	created	in	the	script	in	the	Set
Analysis	expression.	The	flags	can	be	set	up	to	be	simple	binary	values,	0	and	1.
Use	of	flags	optimizes	the	performance	of	frontend	calculations.	The	following
recipe	explores	this	possibility	by	creating	flags	in	the	script	to	identify	the	"On-
time"	and	"Late"	shipments.



Getting	ready
For	the	purpose	of	this	recipe,we	will	be	using	an	inline	data	load	which	contains
shipment	details	for	each	customer.	Load	the	following	script	within	the	Qlik
Sense	data	load	editor:

SalesTemp:

LOAD	DATE(Date#(DeliveryDate,'DD/MM/YYYY'))	AS	DeliveryDate,

DATE(Date#(ShipmentDate,'DD/MM/YYYY'))	AS	ShipmentDate,

Invoiceno.,Customer,Month,Sales	INLINE	[

Invoiceno.,Customer,Month,DeliveryDate,ShipmentDate,Sales

101,ABC,Jan,01/01/2015,29/12/2014,10000

102,ABC,Feb,02/02/2015,25/01/2015,10000

103,ABC,Mar,03/03/2015,02/03/2015,12000

104,ABC,Apr,04/04/2015,24/01/2015,10000

105,DEF,Feb,03/02/2015,03/02/2015,25000

106,DEF,Mar,25/03/2015,21/03/2015,25000

107,DEF,Apr,18/04/2015,14/04/2015,25000

108,GHI,Jan,24/01/2015,18/01/2015,8500

109,GHI,Mar,14/03/2015,09/03/2015,7000

110,GHI,Jun,06/08/2015,07/06/2015,5000

];

Sales:

LOAD	*	,

IF(num(DeliveryDate)-num(ShipmentDate)>=0	AND

Num(DeliveryDate)-num(ShipmentDate)<5	,1,

IF(num(DeliveryDate)-num(ShipmentDate)>=5	AND

Num(DeliveryDate)-num(ShipmentDate)<25	,2,3))	AS	OntimeLateFlag

RESIDENT	SalesTemp;

DROP	TABLE	SalesTemp;



How	to	do	it…
1.	 Drag	across	the	Table	object	from	the	left-hand	side	Assets	panel	on	to	the

sheet.	Name	it	Invoiced	Sales.
2.	 Add	the	following	dimensions:

InvoiceNo.

DeliveryDate

ShipmentDate

Add	the	following	expression	under	data	and	label	it	as	Sales:

Sum({$<OntimeLateFlag={1}>}Sales)

Under	Sorting,	promote	Sales	to	the	top.
Click	on	Save	and	 .
The	resulting	table	on	the	screen	should	look	similar	to	the	following:	

	
Note	that	only	the	invoices	with	a	delivery	time	of	less	than	5	days	are	shown

in	the	preceding	table.



How	it	Works…
The	calculation	to	identify	the	"On	time"	and	"late"	shipments	is	done	in	the
script	and	it	is	executed	only	once.	Every	OnTime	shipment	is	flagged	as	1	and	a
slight	delay	as	2	and	late	as	3.	Use	of	these	flags	in	the	frontend	objects	will	filter
the	data	in	the	table	accordingly.



There's	more…
In	order	to	give	a	more	meaningful	representation	to	the	flags	in	the	frontend,	we
may	use	the	dual	function.	A	Dual()	function	combines	a	number	and	a	string
into	a	single	record.	The	number	representation	of	the	record	can	be	used	to	sort
and	also	for	calculation	purposes,	while	the	string	value	can	be	used	for	display
purposes.

In	order	to	do	this:

1.	 Rename	the	Sales	table	to	SalesTemp1.
2.	 Add	the	following	Resident	load:

Sales:

LOAD	*,

IF(OntimeLateFlag	=1,	Dual('OnTime',1),	

IF(OntimeLateFlag	=2,	Dual('SlightDelay',2),	Dual('Late',3)))	

As	Flag

RESIDENT	SalesTemp1;

DROP	Table	SalesTemp1;

3.	 Save	and	reload	the	application.
4.	 In	the	frontend,	drag	across	the	Filter	pane	object	and	add	the

OntimeLateFlag	and	Flag	dimension	to	it.
5.	 Note	that	every	OntimeLateFlag	value	is	now	associated	with	text:

	

Using	flags	with	a	string	format	in	Set	Analysis	expressions	may	not	always	be
the	most	efficient	way	of	optimizing	the	performance	of	the	Qlik	Sense	objects.
With	a	big	data	set,	using	a	flag	with	a	string	representation	in	the	expression



does	not	offer	a	massive	advantage	as	far	as	the	performance	standpoint	is
concerned.	However,	if	we	have	binary	flags	0	and	1	then	multiplying	these	flags
by	the	measures	results	in	a	faster	performance	in	the	user	interface.

Hence,	we	conclude	the	following:

To	make	selections	in	the	application,	use	the	String	representation	of	flags
in	the	Filter	pane	objects
To	calculate	a	condition	inside	a	Set	Analysis	expression,	use	the	numeric
representation	of	flags



See	also
Using	embedded	functions	in	Set	Analysis



Using	the	=	sign	with	variables	in	Set
Analysis
We	can	make	use	of	variables	and	calculations	in	the	set	modifiers.	The
following	recipe	explains	the	syntax	to	use	variables	for	comparison	in	sets	and
how	to	effectively	use	the	=	sign	in	the	dollar	sign	expansions.



Getting	ready
For	the	purpose	of	this	recipe,we	will	be	using	an	inline	data	load	which	contain
shipment	details	for	each	customer.	Load	the	following	script	in	the	Qlik	Sense
data	load	editor.	Make	sure	that	the	last	record	in	this	script	has	the	Month	set	to
today's	month	and	the	DeliveryDate	set	to	today's	date:

Let	vToday=Today	();

Sales:

LOAD	DATE(Date#(DeliveryDate,'DD/MM/YYYY'))	AS	DeliveryDate,

DATE(Date#(ShipmentDate,'DD/MM/YYYY'))	AS	ShipmentDate,

Customer,Month,Volume,Sales,Supplier

INLINE	[

Customer,Month,DeliveryDate,ShipmentDate,Volume,Sales,Supplier

ABC,Jan,01/01/2015,29/12/2014,100,10000,DEF

ABC,Feb,02/02/2015,25/01/2015,100,10000,DEF

ABC,Mar,03/03/2015,02/03/2015,400,12000,DEF

ABC,Apr,04/04/2015,24/01/2015,100,10000,GHI

DEF,Feb,03/02/2015,03/02/2015,200,25000,GHI

DEF,Mar,25/03/2015,21/03/2015,300,25000,GHI

DEF,Apr,18/04/2015,14/04/2015,200,25000,ABC

GHI,Jan,24/01/2015,18/01/2015,200,8500,ABC

GHI,Mar,14/03/2015,09/03/2015,200,7000,ABC

GHI,Jun,06/08/2015,07/06/2015,200,5000,ABC

];



How	to	do	it…
1.	 Drag	across	a	Table	object	from	the	Assets	panel	onto	the	sheet.
2.	 Add	Customer	as	dimension.
3.	 Now	add	the	following	calculation	as	the	measure	and	label	it	Sales:

Sum({$<DeliveryDate={'$(vToday)'}>}Sales)

Click	on	Save	and	then	 .
The	resultant	table	is	similar	to	the	following	figure	with	only	one	record	for

customer	GHI:	
Next,	update	the	Sales	calculation	as	shown:

Sum({$<DeliveryDate={'$(TODAY())'}>}Sales)

When	you	save	this	calculation,	Qlik	Sense	won't	be	able	to	interpret	the	result
and	we	will	get	the	following	output:	

Tweak	the	sales	calculation	by	adding	a	=	sign	in	front	of	TODAY():

Sum({$<DeliveryDate={'$(=TODAY())'}>}Sales)

The	result	will	be	as	seen	earlier	with	one	record	for	the	customer	GHI.



How	it	works…
We	have	defined	the	vToday	variable	in	the	script.	This	variable	stores	the	values
for	today's	date.	When	we	use	this	variable	inside	the	set	modifier,	we	just	use	a
simple	$	sign	expansion.

The	vToday	variable	is	calculated	before	the	script	is	executed.	However,	Qlik
Sense	fails	to	interpret	the	result	when	we	use	the	TODAY()function	inside	the	set
modifier	instead	of	vToday.	The	reason	being	that	the	$	sign	expansion	needs	to
perform	a	calculation	in	the	form	of	TODAY()	and	without	the	preceding	=	sign
the	date	for	today	won't	be	calculated.

Hence,	we	proceed	to	TODAY()	with	the	=	sign.	Once	the	=	sign	is	in	place,	the
sales	for	customers	with	today's	delivery	date	are	calculated.

If	we	are	not	using	any	calculation	inside	the	set	modifier	then	the	variable	can
be	defined	with	or	without	the	=	sign.



See	also
Point	in	time	using	Set	Analysis



Point	in	time	using	Set	Analysis
How	is	this	month	looking	compared	to	the	last?	This	is	one	of	the	most
common	questions	asked	in	BI	solutions.	In	this	recipe,	we	will	build	two	charts
and	both	will	compare	one	year	to	the	other.	The	first	chart	expression	will	limit
the	range	of	data	and	make	use	of	the	Year	dimension.	The	second	chart	will	not
use	the	Year	dimension	but	will	build	the	year	comparison	directly	into	the
expression	itself.



Getting	ready
For	the	purpose	of	this	recipe,we	will	make	use	of	an	inline	data	load	which
gives	yearly	sales	information	for	different	fruits.	Load	the	following	data	into
the	data	load	editor:

Data:	

LOAD	*	INLINE	[

				Fruit,	Year,	Sales

				Apple,	2013,	63

				Apple,	2014,	4

				Cherry,	2014,	1150

				Cherry,	2013,	1180

				Fig,	2013,	467

				Fig,	2013,	374

				Fig,	2014,	162

				Fig,	2014,	267

				Fig,	2014,	586

				Orange,	2013,	10

				Orange,	2013,	50

				Orange,	2013,	62

				Orange,	2013,	131

				Orange,	2013,	145

				Orange,	2014,	93

				Orange,	2014,	102

				Pear,	2013,	27

				Pear,	2013,	157

				Pear,	2013,	384

				Pear,	2014,	489

				Pear,	2014,	782

				Plum,	2013,	148

				Plum,	2014,	36

				Plum,	2014,	412

				Plum,	2012,	700

];



How	to	do	it…
1.	 Drag	a	line	chart	object	from	the	Assets	panel	onto	the	content	area.	Title	it

Changes	in	Rank.
2.	 Add	Year	as	a	dimension.
3.	 Add	Fruit	as	a	dimension.
4.	 Add	the	following	expression	and	label	it	as	Sales:

sum({<Year={">=$(=MAX(Year)-1)<=$(=MAX(Year))"}>}Sales)

Under	Appearance	|	Colors	and	legend,	switch	on	Show	Legend	and	click
on	 .
Next,	drag	a	bar	chart	onto	the	content	area.	and	title	it	as	Deviation.
Add	Fruit	as	a	dimension.
Add	the	following	expression	and	label	it	as	Sales	Change,	current	year

vs	previous.

sum({<Year={$(=MAX(Year))}>}Sales)-sum({<Year=

{$(=MAX(Year)-1)}>}Sales)	

Select	Horizontal	under	Appearance	|	Presentation.
Under	Appearance	|	Colors	and	legend,	toggle	the	colors	button	to	uncheck

Auto	colors	and	switch	on	custom	colors.	Select	By	dimension	and	check	the
Persistent	colors	button.
Your	graphs	will	look	similar	to	the	following	image:	

	



How	it	works…
The	first	Set	Analysis	expression	makes	use	of	a	search	string;	thus,	defining	the
set	of	records	we	want	to	calculate	across.	A	pseudo	code	will	read	like	this.

Sum	where	the	Year	=	{"Search	for	records	that	fulfill	a	particular	

requirement	"}

Using	the	double	quotes	denotes	that	we	will	be	doing	a	search	starting	with	<	or
>.	Only	values	that	fulfill	the	numeric	requirement	will	be	matched.

In	our	example,	we	define	the	numeric	requirement	of	the	search	string
dynamically	using	the	following	code:

={">=$(=MAX(Year)-1)<=$(=MAX(Year))

This	code	evaluates	the	max	year	and	the	year	previous	to	that.	If	we	changed
the	-1	in	the	preceding	code	to	-2	the	calculation	will	cover	three	years	and	not
just	two;	this	is	the	benefit	of	using	search	strings	in	Set	Analysis.	For	the	second
chart,	we	have	not	used	a	search	string	but	specified	literals.	We	have	kept	the
dynamic	part	of	the	expression	as:

{$(=MAX(Year))}

Now,	the	max	year	available	will	be	picked	up	automatically	as	opposed	to
saying	Year={2015}	and	updating	the	expression	next	year.



Using	comparison	sets	in	Set	Analysis
The	following	figure	is	of	a	stacked	bar	chart,	a	standard	way	of	comparing
separate	entities.	Each	value	that	you	select	is	displayed	as	a	segment	in	each	bar
by	year:

	

Using	a	comparative	analysis	lets	you	group	the	separate	selections	dynamically,
so	that	you	can	compare	them	against	each	other.	In	the	preceding	example	we
can	group	together	Plum	and	Apple	versus	Fig	and	Orange.



Getting	ready
For	the	purpose	of	this	recipe,we	will	make	use	of	an	inline	data	load	which
gives	yearly	sales	information	for	different	fruits.	Load	the	following	script	in
the	Qlik	Sense	data	load	editor:

Data:	

LOAD	*	INLINE	[

				Fruit,	Year,	Sales

				Apple,	2013,	63

				Apple,	2014,	4

				Cherry,	2014,	1150

				Cherry,	2013,	1180

				Fig,	2013,	467

				Fig,	2013,	374

				Fig,	2014,	162

				Orange,	2013,	131

				Orange,	2013,	145

				Orange,	2014,	102

				Pear,	2014,	489

				Pear,	2014,	782

				Plum,	2013,	148

				Plum,	2014,	412

];	

DataIslandFruit:	

LOAD	*	INLINE	[

FruitAlt

Apple

Cherry

Fig

Orange

Pear

Plum

];



How	to	do	it…
1.	 Drag	a	bar	chart	onto	the	content	area	and	title	it	Comparison	Analysis.
2.	 Add	Year	as	a	dimension.
3.	 Add	the	following	expression	and	label	it	as	Group	1	Sales:

Sum(Sales)

Add	the	following	expression	and	label	it	as	Group	2	Sales:

Sum({<Fruit={$(=GetFieldSelections(FruitAlt))}>}Sales)

Under	Appearance	|	Colors	and	legend	switch	on	the	Show	legend	option.
Create	a	Filter	pane	object	and	add	the	first	dimension	as	Fruit.	Label	the

dimension	as	Group	1.
Add	FruitAlt	as	the	second	dimension	to	the	Filter	pane	and	label	the

dimension	as	Group	2.
The	final	chart	should	resemble	one	of	the	following	images	if	you	have

already	made	the	selections	to	test	the	comparative	analysis.

The	following	is	an	example	where	no	selections	are	made:	

The	following	is	an	example	where	selections	are	made:	





How	it	works…
The	second	table	we	loaded	is	what's	known	as	a	data	island,	this	table	is	not
connected	to	the	rest	of	the	data	model	in	any	way.	However,	we	can	use	its
contents	in	our	Set	Analysis	expression	to	compare	different	groups	of	the	same
field.

The	first	expression	is	completely	standard.	The	second	expression	gives	the
total	sales	where	the	Fruit	field	(part	of	the	complete	dataset)	matches	the	values
selected	in	the	FruitAlt	field	(part	of	the	disconnected	data	island).	This	method
allows	us	to	select	groups	of	data	for	aggregation	in	our	graph	that	we	can	not	do
normally	by	effectively	breaking	the	association	(green,	white,	and	grey)	using
Set	Analysis.



Using	embedded	functions	in	Set
Analysis
As	you	have	seen	in	the	previous	recipes,	we	have	used	functions,	such	as	Max()
and	GetFieldSelections()inside	our	Set	Analysis.	Embedding	the	functions
inside	a	Set	Analysis	expression,	specifically	in	the	rules	area	that	defines	the	set
of	records	we	want	to	calculate	across	is	known	as	dollar	sign	expansion.

Defining	a	set	of	records	in	the	simplest	literal	form	is	as	follows	Year=	{2015}.

The	expression	needs	to	know	the	year	you	want	to	use,	dollar	sign	expansion
allows	us	to	generate	the	text	dynamically.	Understanding	how	to	use	dollar	sign
expansion	in	your	Set	Analysis	expressions	enriches	the	amount	of	analysis	you
can	perform.	Sometimes	just	using	the	function	alone	or	specifying	literals	in	Set
Analysis	is	either	too	time	consuming	or	adds	unnecessary	maintenance	to	the
application.



Getting	ready
For	the	purpose	of	this	recipe,	we	make	use	product	sales	data	as	defined	in	the
following	script.	Load	the	following	data	into	the	Qlik	Sense	data	editor:

Transactions:

Load	

	date(today()-IterNo())	AS	Date,

	Pick(Ceil(3*Rand()),'Standard','Premium','Discount')	AS	

ProductType,

	floor(date(today()-IterNo()))	AS	DateNum,

	Round(1000*Rand()*Rand()*Rand())	AS	Sales

Autogenerate	1000

	While	Rand()<=0.9	or	IterNo()=1;



How	to	do	it…
1.	 Create	a	new	sheet	and	double	click	on	the	table	object	to	add	it	to	the	main

content	area.
2.	 Add	Product	Type	as	a	dimension.
3.	 Add	the	following	measure	as	an	expression,	label	it	Total	Sales:

sum(Sales)

4.	 Add	the	following	measure	as	the	second	expression,	label	it	WTD:

sum({<DateNum={">=$(=Today()-7)"}>}Sales)

5.	 Add	the	following	measure	as	the	third	expression,	label	it	Previous	WTD:

sum({<DateNum={">=$(=Today()-14)<$(=Today()-7)"}>}Sales)

6.	 Add	the	following	as	the	fourth	expression,	label	it	Weekly	Variance:

(COLUMN(2)-COLUMN(3))/COLUMN(2)

7.	 For	the	expression	in	step	6,	change	the	number	formatting	to	Number	and
then	select	the	percentage	format	from	the	drop-down	list.

8.	 You	should	have	a	table	that	looks	similar	to	the	following	image.	The
figures	may	not	be	similar	to	the	following	image	as	we	are	using	the	Rand
function	to	generate	the	initial	set	of	data	in	the	script:

	



How	it	works…
When	calculating	something	like	week	to	date	sales,	the	set	of	records	you
identify	in	your	Set	Analysis	expression	will	change	every	day.	When	you	use
functions	such	as	Today()	inside	the	Set	Analysis	expression,	the	literal	text
values	that	the	expression	uses	change	automatically.	Ultimately	using	dollar
sign	expansion	is	just	a	replacement	for	the	text	strings	that	you	could	use.

If	the	date	today	is	06/08/2015	then.	The	user	see	the	set	condition	as:

DateNum={">=$(=Today()-7)"}

While	Qlik	Sense	sees	the	set	condition	as:

DateNum={">=31/07/2015"}

This	is	because	the	function	inside	the	dollar	sign	is	evaluated	first	and	it	simply
expands	into	the	text/field	values	that	we	want	to	calculate	across.



There's	more…
The	fourth	expression	is	written	as:

(COLUMN(2)-COLUMN(3))/COLUMN(2).	Here	we	pick	up	the	column	numbers
instead	of	the	actual	field	names	for	our	calculation.

We	can	also	write	the	expression	in	the	following	manner:

([WTD]-[Previous	WTD])/[WTD]	.

We	will	get	a	bad	field	name:	([WTD]-[Previous	WTD])/[WTD]	at	the	bottom	of
the	Expression	editor	window.	But	don't	worry,	as	Qlik	Sense	will	still	interpret
the	results	correctly.	This	chink	may	be	ironed	out	in	future	releases	of	Qlik
Sense.

The	expression	does	not	make	use	of	the	fields	that	we	have	loaded	into	the
applications	data	model.	It	instead	uses	the	expression	labels	we	have	already
created	for	the	previous	calculations.	This	is	always	a	best	practice	option	if	you
need	to	use	the	same	calculation	in	the	same	table	more	than	once.	It	make
things	simpler,	you	only	have	to	change	something	once	and	best	of	all	it	is
optimized	and	the	calculation	is	already	cached	in	RAM.



Creating	a	multi-measure	expression
in	Set	Analysis
Sometimes	you	may	have	groups	of	expressions	you	want	to	view	that	either
they	don't	need	to	be	viewed	at	once	or	you	don't	have	the	room	to	display	them
all.	In	these	cases	you	do	not	have	to	go	and	create	another	sheet,	you	can	add	a
control	to	let	users	select	what	is	calculated.

The	output	of	this	recipe	is	similar	to	the	preceding	recipe,	only	with	slightly
different	expressions	to	add	depth	of	analysis	in	the	same	object.



Getting	ready
For	the	purpose	of	this	recipe,	we	make	use	product	sales	and	margin	data	as
defined	in	the	following	script.	Load	the	following	data	into	the	data	editor:

Transactions:

Load	

Date(today()-IterNo())	AS	Date,

Pick(Ceil(3*Rand()),'Standard','Premium','Discount')	AS	

ProductType,

Floor(date(today()-IterNo()))	AS	DateNum,

	Round(1000*Rand()*Rand()*Rand())	AS	Sales,

	Round(10*Rand()*Rand()*Rand())	AS	Quantity,

	Round(Rand()*Rand(),0.00001)	AS	Margin

Autogenerate	10000

While	Rand()<=0.9	or	IterNo()=1;

Measures:

LOAD	*	INLINE	[

				Measures

				Sales

				Quantity

				Margin

];



How	to	do	it…
1.	 Create	a	Filter	pane	object	and	add	Measures	as	the	dimension.
2.	 Next,	drag	across	a	table	object	onto	the	main	content	area.
3.	 Add	Product	Type	as	a	dimension
4.	 Add	the	following	expression	as	the	first	measure	and	label	it	Total	Sales:

sum($(=GetFieldSelections(Measures)))

5.	 Add	the	following	expression	as	the	second	measure	and	label	it	WTD:

sum({<DateNum=

{">=$(=Today()-7)"}>}$(=GetFieldSelections(Measures)))

6.	 Add	the	following	measure	as	the	third	expression	and	label	it	Previous
WTD:

sum({<DateNum={">=$(=Today()-14)<$(=Today()-7)"}>}	

$(=GetFieldSelections(Measures)))

7.	 Add	the	following	as	the	fourth	expression	and	label	it	Weekly	Variance:

(COLUMN(2)-COLUMN(3))/COLUMN(2)

8.	 For	the	expression	in	step	7	change	the	number	formatting	to	Number	and
then	select	the	percentage	format	from	the	drop-down	list.

9.	 If	you	come	out	of	the	Edit	mode	and	select	one	value	from	the	Filter	pane
object,	you	can	see	the	calculation	changing.

10.	 You	should	have	a	table	that	looks	similar	to	the	following	image.	The
figures	may	not	be	exactly	similar	to	the	following	image	since	we	are
using	the	Rand	function	to	generate	the	initial	set	of	data	in	the	script:

	



How	it	works…
Here	we	capture	the	field	values	that	we	want	to	calculate	using	a	data	island.
When	we	use	a	data	island,	we	simply	pick	an	option	from	the	measures	box
without	filtering	the	data	in	any	way.	But	this	approach	allows	us	to	control	what
calculations	are	being	returned.

The	GetFieldSelections	(Measures)	function	simply	returns	Sales,	Margin,
or	Quantity	depending	on	what	you	have	selected.	As	such,	writing	the
expression	Sum	(GetFieldSelections	(Measures))	means	we	can	have	any	of
the	three	options	displayed	just	by	selecting	the	value	from	the	Filter	pane.

As	mentioned	in	the	previous	recipe,	we	can	write	the	Weekly	Variance
expression	using	the	expression	labels	previously	defined	in	the	table	as	follows:

([WTD]-[Previous	WTD])/[WTD]

We	will	get	a	warning	for	"Bad	field"	at	the	bottom	of	the	Expression	editor
window.	Ignore	it,	as	this	chink	may	be	ironed	out	in	future	releases	of	Qlik
Sense.



Using	search	strings	inside	a	set
modifier
A	set	modifier	contains	one	or	several	field	names	that	make	up	the	set
expression.	We	can	define	a	range	of	values	within	the	selection	made	in	the	set
modifier.	The	following	recipe	makes	use	of	search	strings	to	calculate	the	sales
for	customers	within	a	specified	date	range.



Getting	ready
For	the	purpose	of	this	recipe,	we	will	be	using	an	inline	data	load	which	contain
shipment	details	for	each	customer.	Load	the	following	script	within	the	Qlik
Sense	data	load	editor:

Sales:

LOAD	DATE(Date#(DeliveryDate,'DD/MM/YYYY'))	AS	DeliveryDate,

DATE(Date#(ShipmentDate,'DD/MM/YYYY'))	AS	ShipmentDate,

Customer,Month,Volume,Sales,Supplier	INLINE	[

Customer,Month,DeliveryDate,ShipmentDate,Volume,Sales,Supplier

ABC,Jan,01/01/2015,29/12/2014,100,10000,DEF

ABC,Feb,02/02/2015,25/01/2015,100,10000,DEF

ABC,Mar,03/03/2015,02/03/2015,400,12000,DEF

ABC,Apr,04/04/2015,24/01/2015,100,10000,GHI

DEF,Feb,03/02/2015,03/02/2015,200,25000,GHI

DEF,Mar,25/03/2015,21/03/2015,300,25000,GHI

DEF,Apr,18/04/2015,14/04/2015,200,25000,ABC

GHI,Jan,24/01/2015,18/01/2015,200,8500,ABC

GHI,Mar,14/03/2015,09/03/2015,200,7000,ABC

GHI,Jun,11/06/2015,07/06/2015,200,5000,ABC

];



How	to	do	it…
1.	 Drag	across	the	Table	object	from	the	Assets	panel	on	to	the	sheet.
2.	 Add	Customer	as	dimension.
3.	 Add	the	following	measure,	which	calculates	the	sales	for	delivery	dates

ranging	between	14/01/2015	and	14/04/2015.	Label	the	measure	as	Sales:

Sum({<	DeliveryDate	=	{'>=$(=DATE(Date#

('14/01/2015','DD/MM/YYYY')))<=$(=DATE(Date#

('14/04/2015','DD/MM/YYYY')))'}	>}	Sales)

Click	on	Save	and	 .
The	resultant	table	will	be	as	following.	Note	that	we	get	a	subset	of	the	Sales

value	based	on	the	date	range	specified	in	the	set	modifier:	

	
Drag	across	the	Filter	pane	object	onto	the	sheet	and	add	the	DeliveryDate	as

dimension.
Select	any	random	delivery	dates.	Observe	that	the	Sales	figure	for	each

customer	remains	unchanged.



How	it	works…
In	the	set	modifier	we	specify	two	dates	enclosed	within	single	quotes	('').	The
first	date	is	the	start	date	of	the	range	and	it	is	preceded	by	a	>=	sign,	while	the
second	date	is	an	end	date	of	the	range	and	is	preceded	by	a	<=	sign.	We	use	a
date	function	in	order	to	interpret	the	strings	as	date.	The	$	sign	expansion
evaluates	the	expression	inside	the	bracket.



There's	more…
The	preceding	recipe	considers	two	static	dates	for	the	date	range.	We	can	also
make	the	date	range	dynamic	by	tweaking	our	Set	Analysis	expression	the
following	way:

Sum({<DeliveryDate	=	{">=$(=min(ShipmentDate))

<=$(=max(ShipmentDate))"}	>}	Sales	)

Here	we	are	comparing	the	delivery	date	to	the	shipment	date	and	calculating
sales	for	the	delivery	dates	lying	between	the	range	of	shipment	dates.

For	example:

1.	 Add	ShipmentDate	as	a	new	dimension	in	the	Filter	pane	object.
2.	 Select	the	shipment	dates	from	18/01/2015	to	25/01/2015.
3.	 The	resultant	table	shows	the	sales	value	only	for	the	delivery	date,	as

24/01/2015:

	



See	also
Using	the	=	sign	with	variables	in	Set	Analysis



Capturing	a	list	of	field	values	using	a
concat()	function	in	Set	Analysis
While	we	have	used	the	search	strings	in	previous	recipes	to	do	numeric	search,
we	can	also	do	text	searches	by	using	the	wild	card	character	*.	However,
sometimes	you	might	want	to	compare	the	values	in	one	field	to	the	values
stored	in	another.	We	can	also	achieve	this	using	Set	Analysis	and	the	concat()
function.



Getting	ready
For	the	purpose	of	this	recipe,	we	make	use	product	sales	data	as	defined	in	the
following	script.	Load	the	following	script	into	the	data	load	editor:

Transactions:

Load	*,

				If(Len(TmpSubCategory)=0,Null(),TmpSubCategory)	AS	SubCategory;

Load	*	INLINE	[

				ProductType,	Category,	TmpSubCategory,	Sales

				Premium,A4,A4,300

				Standard,A4,A4,100

				Premium,A5,A5,500

				Standard,A5,A5,200

				Premium,A6,A6,1000

				Standard,A6,A6,600

				Premium,A1,,700

				Standard,A1,,300

				Premium,A2,,300

				Premium,A3,,200

				Standard,A3,,60

];	



How	to	do	it…
1.	 Drag	a	table	object	onto	the	content	area	and	label	it	as	Product	Sales.
2.	 Add	Product	Type	as	a	dimension
3.	 Add	the	following	expression	as	the	first	measure	and	label	it	as	Total

Sales:

Sum	(Sales)

4.	 Add	the	following	expression	as	the	second	measure	and	label	it	as	Sub
Category	Sales:

Sum	({<Category	=	{$(=concat	(distinct	[SubCategory],	','))}	>}	

Sales)

5.	 You	should	have	a	table	that	looks	similar	to	the	following	image:

	



How	it	works…
The	concat()	function	wraps	around	a	field	name;	when	expressed	it	lists	every
field	value	separated	by	a	delimiter.	As	such,	the	function	concat	(Distinct
Subcategory,',')	returns	A4,	A5,	A6,	which	are	all	the	values	in	the	sub-
category	field	with	no	selections	made.

Using	the	concat()	function	means	you	can	avoid	having	to	write	out	large	lists
of	text	strings	in	your	Set	Analysis	expression.	Even	better,	if	these	lists	come
from	a	source	system	where	they	are	automatically	updated	with	data.



Using	the	element	functions	P()	and
E()	in	Set	Analysis
So	far	we	have	seen	how	the	sets	can	be	used	to	manipulate	the	result	of	an
expression.	To	take	the	concept	a	bit	further,	we	will	now	see	how	to	use	the	P()
and	E()	functions	inside	a	Set	Analysis	expression.	In	the	previous	Set	Analysis
expressions,	all	field	values	were	explicitly	defined	in	the	sets	or	variables	or	in
certain	cases	through	defined	searches.	The	P()	and	E()	functions	make	use	of
nested	set	definitions.

A	P()	function	returns	a	set	of	all	possible	values	while	an	E()	function	returns	a
set	of	all	excluded	values.



Getting	ready
For	the	purpose	of	this	recipe,	we	make	use	customer	sales	data	as	defined	in	the
following	inline	data	load.	Load	the	following	script	in	Qlik	Sense	data	load
editor:

P_E:

LOAD	*	INLINE	[

Customer,Month,Volume,Sales,Supplier

ABC,Jan,100,10000,DEF

ABC,Feb,100,10000,DEF

ABC,Mar,400,12000,DEF

ABC,Apr,100,10000,GHI

DEF,Feb,200,25000,GHI

DEF,Mar,300,25000,GHI

DEF,Apr,200,25000,ABC

GHI,Jan,200,8500,ABC

GHI,Mar,200,7000,ABC

GHI,Jun,200,5000,ABC

];



How	to	do	it…
1.	 On	a	new	sheet,	drag	and	drop	the	table	object	from	the	Assets	panel	on	the

left-hand	side	of	the	screen.	Name	the	table	as	Possible	Sales.
2.	 Add	Customer	and	Month	as	dimensions.
3.	 Add	the	following	expression	for	Sales:

Sum({$<Customer=P({1<Month={'Jan'}>})>}Sales)

Click	on	Save	and	 .
The	resultant	table	will	look	similar	to	the	following.	Note	that	it	only	shows

all	the	records	for	customers	ABC	and	GHI:	

Next,	create	another	table	with	the	same	dimensions,	such	as	Customer	and
Month	and	name	it	Excluded	Sales.
Add	the	Sales	expression	as	follows:

Sum({$<Customer=E({1<Month={'Jan'}>})>}Sales)

The	resultant	table	will	look	similar	to	the	following	screen	shot.	Note	that	we
only	have	one	customer	DEF	in	the	table:	





How	it	works…
1.	 The	P()	function	selects	all	the	possible	values	from	the	set.	In	the	first

expression:

Sum({$<Customer=P({1<Month={'Jan'}>})>}Sales)

We	select	the	customers	who	have	made	sales	in	the	month	of	January.
2.	 However,	the	E()	function	selects	all	the	excluded	values	from	the	set.	In

the	second	expression:

Sum({$<Customer=E({1<Month={'Jan'}>})>}Sales)

We	select	the	customers	who	have	made	sales	in	all	months	except	January.



There's	more…
The	concept	of	P()	and	E()	can	also	be	used	with	two	fields	for	comparison
inside	the	nested	sets.

For	example:	if	one	needs	to	find	out	all	those	customers	where	the	suppliers	had
a	volume	of	300,	the	set	expression	will	be	defined	in	the	following	way:

Sum({$<Customer=p({1<Volume={300}>}Supplier)>}Sales)

Here,	the	element	function	P()	returns	a	list	of	possible	suppliers	who	had	a
volume	of	300.	The	list	of	suppliers	is	then	matched	to	the	customers	to	make	the
relevant	selections.

The	resultant	table	will	look	similar	to	the	following:

	

An	E()	function	in	place	of	P()	will	result	in	all	the	customers	whose	suppliers
never	had	a	volume	of	300:	



	



See	also
Using	embedded	functions	in	Set	Analysis



Chapter	7.	Extensions	in	Qlik	Sense®
In	this	chapter,	we	will	focus	on	some	of	the	advanced	visualization	techniques
in	Qlik	Sense	and	discuss	the	following	topics:

Creating	an	HTML	visualization	extension	for	Qlik	Sense®

Defining	a	Properties	panel	in	Qlik	Sense®	visualizations
Creating	custom	components	within	Qlik	Sense®	visualizations
Using	data	with	extensions



Introduction
Before	we	jump	the	gun,	it	is	expected	of	the	user	to	have	an	intermediate	level
of	JavaScript	and	HTML	knowledge	to	develop	extensions	in	Qlik	Sense.

Qlik	Sense	has	an	extensive	library	of	chart	objects	to	display	data.	However,	of
late	there	has	been	an	increase	in	the	demand	for	custom	visualizations	from
business	users	and	such	visualizations	are	used	in	specific	circumstances.
Similar	to	Qlikview,	we	can	also	develop	visualization	extension	objects	in	Qlik
Sense	using	open	standards,	such	as	HTML5,	CSS,	and	JavaScript.

However,	the	method	to	create	these	extensions	differs	in	Qlik	Sense.	Qlik	Sense
visualizations	are	compatible	with	an	AJAX	interface	or	any	other	web	browser.
We	can	also	use	JavaScript	code	from	external	visual	libraries,	such	as	D3	to
make	intuitive	and	user	friendly	extension	objects.

The	following	recipes	discuss	different	concepts	in	advanced	visualizations,	such
as	HTML	extensions,	custom	components,	and	use	of	data	with	extensions.



Creating	an	HTML	visualization
extension	for	Qlik	Sense®
To	begin	with,	let	us	discuss	a	recipe	to	create	a	simple	HTML	extension	in	Qlik
Sense.	The	two	files	that	are	mandatory	to	create	any	Qlik	Sense	extension	are:

.JS	file:	This	file	contains	the	JavaScript	required	to	implement	the
extension	and	is	built	around	the	RequireJS	framework
.QEXT	file:	This	is	an	extension	metadata	file,	which	contains	the	JSON
description	to	be	used	within	the	desktop	client

In	addition	to	the	preceding	mandatory	files,	one	can	also	make	use	of	additional
files,	such	as:

Script	files	from	external	libraries	such	as	D3	or	Raphael
CSS	files:	To	add	styles	to	the	extensions
Images,	Fonts,	Icons,	and	so	on

The	default	directory	for	Qlik	Sense	Desktop	extensions	is	C:\Users\
[UserName]\Documents\Qlik\Sense\Extensions\.

In	this	example	we	will	print	the	words	"Hello	World"	on	the	screen	using	our
first	Qlik	Sense	extension.	This	is	a	common	first	task	used	when	we	learn
various	programming	languages.	The	idea	is	to	keep	the	code	as	simple	as
possible	while	providing	information	on	the	structure	of	the	code	and	anatomy	of
the	extension	environment.

Note

A	little	slice	of	history:	Using	the	"Hello,	World"	example	dates	back	as	far
1974.	The	first	known	version	in	computer	literature	was	taken	from	a	1974	Bell
Laboratories	internal	memorandum	on	programming	in	C.



Getting	ready
This	recipe	is	built	entirely	from	the	How	to	do	it...	section	and	does	not	require
data	to	be	loaded	first.	We	use	notepad	to	write	the	code	in	the	following
examples.	A	suggested	alternative	is	Notepad++,	which	the	user	can	download
separately.	Notepad++	is	a	free	tool	that	improves	the	readability	of	the	code	by
highlighting	methods,	functions,	and	so	on.

Taking	into	consideration	the	two	mandatory	files,	let's	start	creating	a	simple
extension	using	HTML:

1.	 Create	a	folder	called	as	QlikSense	Cookbook	–	Hello	World	to	store	the
.JS	and	.QEXT	files.

2.	 The	folder	should	be	created	under	C:\Users\
[UserName]\Documents\Qlik\Sense\Extensions\.



How	to	do	it…
1.	 In	the	QlikSense	Cookbook	–	Hello	World	folder,	create	a	new	notepad

document	and	add	the	following	code:

{

				"name"	:	"	QlikSense	Cookbook	-	Hello	World",

				"description"	:	"QlikSense	Cookbook	-	Chapter	7,	Recipe	1:	

Hello	World.",

				"icon"	:	"extension",

								"type"	:	"visualization",

								"version":	"1",

				"preview"	:	"bar",

				"author":	"Your	Name"

}

Click	on	Save	As	in	the	notepad	document	and	change	the	Save	as	type	to	All
Files	(*.*).
Call	the	file	name	QlikSense-Cookbook-C7-R1-HelloWorld.qext.
Create	another	blank	notepad	file	in	the	same	location	and	add	the	following

code:

define(	[

								'jquery'

				],

				function	(	$	)	{

								'use	strict';

								return	{

						paint:function	(	$element,	layout	)	{

						$element.empty();

																var	$helloWorld		=	$(	document.createElement(	'div'	

)	);

																$helloWorld.html('Hello	World	from	the	extension	

"QlikSense	Cookbook	-	HelloWorld"<br/>');

																$element.append(	$helloWorld);

												}

								};

				}	);

Click	on	Save	As	in	the	notepad	document	and	change	the	Save	as	type	to	All
Files	(*.*).	Call	the	file	named	QlikSense-Cookbook-C7-R1-HelloWorld.js.
Create	a	new	application	in	Qlik	Sense	Desktop	and	name	it

QlikSenseCookBook_Extensions.
Open	the	data	load	editor	and	load	the	following	code:



LOAD	1	as	Dummy	AUTOGENERATE(1);

Once	the	script	is	successfully	run,	open	the	App	overview	from	the
Navigation	dropdown	at	the	top.	Create	a	new	sheet	and	go	to	the	Edit	mode.
In	the	visualization	area,	we	will	be	able	to	see	the	extension	alongside	the

normal	default	visualizations	with	the	name	QlikSense	Cookbook-Hello	world.
Drag	across	the	object	onto	the	sheet.
Add	the	Title	as	Qlik	Sense	Extension.
The	resultant	object	on	the	screen	should	look	similar	to	the	following:	

	



How	it	works…
The	QlikSense-Cookbook-C7-R1-HelloWorld.js	contains	the	JavaScript	to
build	what	the	extension	will	actually	do.	It	is	formed	of	two	main	parts	Define
and	Paint:

Define:	This	is	used	to	define	the	dependencies	in	the	JavaScript	file.	It
follows	the	concept	specified	in	the	RequireJS	framework.	In	our	recipe	we
have	not	loaded	any	external	dependency.	However,	if	the	need	arises,	this
can	be	loaded	prior	to	the	execution	of	the	main	script.
Paint:	This	is	the	main	part	of	the	script	which	basically	renders	the
visualization.	It	is	formed	of	two	parts	$element	and	layout:

$element	contains	the	HTML	content
layout	contains	the	data	and	properties	of	the	extension

The	QlikSense-Cookbook-C7-R1-HelloWorld.qext	file	contains	the	metadata
about	the	extension,	such	as	the	name,	description,	icon,	type,	version,	and
author.	Out	of	these,	the	name	and	type	properties	are	mandatory.

The	basic	structure	of	a	.qext	file	is	shown	in	the	following	code:

{

				"name"	:	"QlikSense	Cookbook	-	Hello	World",

				"description"	:	"	QlikSense	Cookbook,	Simple	Hello	World.",

				"preview"	:	"bar",

				"icon"	:	"extension",

				"type"	:	"visualization",

				"version":	"1",

					"author":	"Your	Name"

}

The	first	four	lines	control	what	is	displayed	in	the	following	image:



	

The	type	should	always	be	"visualization".	The	default	value	for	an	icon	is
"extension"	but	it	can	be	changed	to	a	predefined	list	of	icon	names,	such	as	the
"Line	chart",	"Bar	chart",	and	so	on.	This	specifies	the	icon	displayed	in	the
Assets	panel	besides	the	extension	object:

version:	Specifies	the	version	of	the	extension
author:	Specifies	the	author	of	the	extension

One	can	also	define	a	preview	image	for	the	extension	object	under	the	preview
property	in	the	.qext	file.	For	example	"Preview":	QSExtension.png.	The	.PNG
file	must	be	stored	in	the	same	folder	as	the	extension.

If	we	don't	define	the	preview	image,	then	the	Icon	definition	will	supersede.



There's	more…
The	extension	discussed	in	the	preceding	recipe	displays	static	text	Hello	World
from	the	extension	of	"QlikSense	Cookbook	-	HelloWorld".	However,	we	can
make	it	dynamic	by	making	some	simple	additions	to	the	code,	as	discussed	in
the	following	steps:

1.	 Open	the	QlikSense-Cookbook-C7-R1-HelloWorld.js	file.
2.	 Inside	Define	add	another	object	called	definition	which	describes	the

basic	design	of	the	property	panel	for	the	extension	object:

definition:	{

				type:	"items",

				component:	"accordion",

				items:	{

								appearancePanel:	{

												uses:	"settings",

												items:	{

																QSPropertyPanel:	{

																				ref:	"QSDynamicExtension",

																				type:	"string",

																				label:	"QlikSense	extension	Text"

																}

												}

								}

				}

},

3.	 In	order	to	render	what	we	enter	in	the	text	box	defined	in	step	1,	we	need
to	enter	the	console.log(layout);	statement	at	the	start	of	the	paint	block.

4.	 Finally,	to	make	the	result	dynamic,	modify	the	output	statement	to:

'$helloWorld		.html(layout.	QSDynamicExtension);'

5.	 The	final	code	in	the	QlikSense-Cookbook-C7-R1-HelloWorld.js	file
should	look	like	the	following	code:

define(	[

								'jquery'

				],

				function	(	$	)	{

								'use	strict';

								return	{

			definition:	{



				type:	"items",

				component:	"accordion",

				items:	{

								appearancePanel:	{

												uses:	"settings",

												items:	{

																QSPropertyPanel:	{

																				ref:	"QSDynamicExtension",

																				type:	"string",

																				label:	"QlikSense	extension	Text"

																}

												}

								}

				}

},

												paint:	function	(	$element,	layout	)	{

			console.log(layout);

			$element.empty();

														var	$helloWorld		=	

$(document.createElement('div'));

															$helloWorld.html(layout.QSDynamicExtension);

															$element.append($helloWorld);

												}

								};

				}	

);

6.	 Refresh	your	Qlik	Sense	document	by	pressing	F5	before	implementing	the
new	dynamic	extension.

7.	 The	Properties	panel	of	the	resultant	extension	object	will	look	like	the
following	image:



8.	 Put	any	desired	text	in	the	QlikSense	extension	Text	box	and	check	results.



See	also
Creating	a	Qlik	Sense®	visualization	using	Qlik	Dev	Hub	in	Chapter	7,
Extensions	in	Qlik	Sense®.



Defining	a	Properties	panel	in	Qlik
Sense®	visualizations
Typically,	the	most	common	properties	used	by	any	Qlik	Sense	visualization	are
Dimensions,	Measures,	and	Appearance.	The	appearance	section	is	included	by
default	when	we	create	any	Qlik	Sense	visualization,	even	if	the	Properties	panel
is	not	defined.

We	can	extend	the	definition	of	these	properties	in	the	JavaScript	code	to	reuse
the	built	in	sections.	The	following	recipe	demonstrates	how	to	define	and
extend	the	definitions	of	properties	in	Qlik	Sense	visualization	and	further
reference	these	properties	in	our	code.



Getting	ready
This	recipe	is	a	continuation	of	the	previous	recipe.	So,	we	will	be	using	the
same	QlikSense-Cookbook-C7-R1-HelloWorld.js	file,	which	contains	the	code
for	the	dynamic	extension	as	discussed	in	the	There's	more...	section.



How	to	do	it…
1.	 Open	the	QlikSense-Cookbook-C7-R1-HelloWorld.js	file	located	at

C:\Users\<username>\Documents\Qlik\Sense\Extensions\	QlikSense

Cookbook	–	Hello	World\.
2.	 We	have	reused	the	settings	section	while	creating	the	dynamic	extension,

which	is	nothing	but	the	internal	name	for	the	Appearance	section.
3.	 Next,	we	will	extend	the	definition	to	reuse	other	built-in	sections.	In	this

example	we	will	reuse	the	sorting	sections.
4.	 Add	the	following	piece	of	code	after	the	QSpropertyPanel	under	items:

sorting:	{

												uses:	"sorting"

								}

Save	the	JavaScript	file	and	refresh	your	Qlik	Sense	application	at	this	stage
so	that	the	"QlikSense	Cookbook	–	Hello	World"	gets	updated.	The	Properties
panel	for	the	extension	will	look	similar	to	the	following	image:	

We	will	output	some	values	to	the	paint	method	by	inserting	the	code	as
shown	in	the	following	code	inside	the	paint	function:

console.info('paint	>>	layout	>>	',	layout);

			$element.empty();

														var	$helloWorld		=	$(document.createElement('div'));

																//	Variable	holding	the	output

																var	html	=	'<b>Property	values:</b><br/>';

																html	+=	'Title:	'	+	layout.title	+	'<br/>';

																html	+=	'SubTitle:	'	+	layout.subtitle	+	'<br/>';

											//	Assigning	the	variable	to	our	output	container

				$helloWorld.html(	html	);

			//$helloWorld.html(layout.QSDynamicExtension);

															$element.append($helloWorld);



The	final	script	for	the	QlikSense-Cookbook-C7-R1-HelloWorld.js	file	will
look	like	the	following	code:

define(	[

								'jquery'

				],

				function	(	$	)	{

								'use	strict';

								return	{

			definition:	{

				type:	"items",

				component:	"accordion",

				items:	{

						

								appearancePanel:	{

												uses:	"settings",

												items:	{

																QSPropertyPanel:	{

																				ref:	"QSDynamicExtension",

																				type:	"string",

																				label:	"QlikSense	extension	Text"

																},

								sorting:	{

												uses:	"sorting"

								}

								

												}

								}

				}

},

												paint:	function	(	$element,	layout	)	{

		//console.log(layout);

			console.info('paint	>>	layout	>>	',	layout);

		$element.empty();

														var	$helloWorld		=	$(document.createElement('div'));

		//	Variable	holding	the	output

		var	html	=	'<b>Property	values:</b><br/>';

		html	+=	'Title:	'	+	layout.title	+	'<br/>';

		html	+=	'SubTitle:	'	+	layout.subtitle	+	'<br/>';

											//	Assigning	the	variable	to	our	output	

											//container

				$helloWorld.html(	html	);

															$element.append($helloWorld);

												}

								};



				}	

);

The	changes	we	made	in	the	JavaScript	file	will	introduce	the,	Property
Values,	section	to	the	Properties	panel.
Save	the	file	and	return	back	to	the	Qlik	Sense	application.
Create	a	new	sheet.

Go	to	the	 	mode.
On	the	left	hand	side	pane,	you	will	notice	the	extension	object	"QlikSense

Cookbook	–Hello	World".	Drag	the	extension	object	onto	the	sheet.
Next,	go	to	the	General	section	under	Properties	and	add	Title	as	Qlik	Sense

CookBook-Hello	World	and	SubTitle	as	Chapter	7.
The	resulting	output	will	be	as	follows:



How	it	works…
We	reference	the	defined	properties	in	our	JavaScript	file	under	the	paint
section.	We	use	a	layout	parameter	that	includes	the	current	scope	of	the
visualization	extension	together	with	the	properties;	this	parameter	is	passed	to
the	paint	method.



There's	more…
We	can	use	other	native	Qlik	Sense	properties	in	our	Properties	panel	definitions
such	as	Dimension,	Measure,	Data	Handling,	Reference	lines,	and	so	on.	For
more	information	on	the	Add-Ons	go	to	the	following	address:

https://help.qlik.com/sense/2.0/en-
US/developer/#../Subsystems/Extensions/Content/extensions-reusing-
properties.htm%3FTocPath%3DBuilding%2520visualization%2520extensions%7CGetting%2520started%2520building%2520visualization%2520extensions%7CBuilding%2520a%2520properties%2520panel%7C_____1

https://help.qlik.com/sense/2.0/en-US/developer/#../Subsystems/Extensions/Content/extensions-reusing-properties.htm%3FTocPath%3DBuilding%2520visualization%2520extensions%7CGetting%2520started%2520building%2520visualization%2520extensions%7CBuilding%2520a%2520properties%2520panel%7C_____1


Creating	custom	components	within
Qlik	Sense®	visualizations
Other	than	the	predefined	properties,	the	user	may	want	to	create	custom
components	to	alter	the	properties	of	the	extension	object.	This	is	done	in	the
appearance	according	to	the	main	JavaScript	file.	The	use	of	custom	components
provides	the	user	with	more	options	to	customize	the	extension	objects	from	the
Properties	panel.

The	list	of	different	UI	components	that	you	can	use	in	the	custom	properties	is
as	follows:

Check	box
Input	box/Text	box
Drop	down	list
Radio	button
Button	group
Switch
Slider
Range-slider



Getting	ready
This	recipe	is	a	continuation	from	the	previous	recipe.	So	we	will	be	using	the
QlikSense-Cookbook-C7-R1-HelloWorld.js	file	for	this	recipe	as	well,	which
we	created	for	dynamic	extensions	in	the	There's	more...	section.

The	recipe	explains	the	procedure	to	create	a	check	box	in	the	Properties	panel.



How	to	do	it…
1.	 Open	the	QlikSense-Cookbook-C7-R1-HelloWorld.js	file	located	at

C:\Users\<username>\Documents\Qlik\Sense\Extensions\	QlikSense

Cookbook	–	Hello	World\.
2.	 Next,	we	will	add	the	property	definition	of	the	custom	Check	box	as	a	new

accordion	item.	This	will	be	put	inside	the	return	block	under	items.
3.	 The	definition	of	check	box	will	be	as	follows:

MyAccordion:	{

						type:	"boolean",

						label:	"Show	me",

						ref:	"myproperties.show",

						defaultValue:	true

						},

4.	 The	final	script	for	the	QlikSense-Cookbook-C7-R1-HelloWorld.js	file
will	look	like	the	following	code:

define(	[

								'jquery'

				],

				function	(	$	)	{

								'use	strict';

								return	{

			definition:	{

				type:	"items",

				component:	"accordion",

				items:	{

												MyAccordion:	{

								type:	"boolean",

								label:	"Show	me",

								ref:	"myproperties.show",

								defaultValue:	true

						},

								appearancePanel:	{

												uses:	"settings",

												items:	{

																QSPropertyPanel:	{

																				ref:	"QSDynamicExtension",

																				type:	"string",

																				label:	"QlikSense	extension	Text"

																}

												}



								}

				}

},

												paint:	function	(	$element,	layout	)	{

			console.log(layout);

			$element.empty();

														var	$helloWorld		=	

$(document.createElement('div'));

															$helloWorld.html(layout.QSDynamicExtension);

															$element.append($helloWorld);

												}

								};

				}	

);	

5.	 Save	the	file	and	return	back	to	the	Qlik	Sense	application.
6.	 Create	a	new	sheet.

7.	 Go	to	the	 	mode.
8.	 On	the	left-hand	side	pane,	you	will	find	the	extension	object	"QlikSense

CookBook	–Hello	World".	Drag	the	extension	object	onto	the	sheet.
9.	 The	Properties	panel	to	the	right	displays	the	Show	me	checkbox	as	the

following	image:

	



How	it	works…
The	definition	for	each	of	the	custom	properties	is	stated	in	the	definition	block
of	the	code	in	the	main	JavaScript	file	of	the	extension.

In	our	example,	the	definition	for	the	check	box	contains	four	fields	namely
type,	ref,	label,	and	defaultvalue.	The	field	type	is	mandatory	and	should	be
assigned	a	Boolean	value	for	a	check	box	property	definition.

label	is	used	to	label	the	check	box	with	a	header	in	the	Properties	panel
ref	is	an	Id	to	refer	to	the	check	box	property
defaultvalue	defines	the	default	value	for	the	check	box



There's	more…
In	a	way	similar	to	the	one	described	in	the	preceding	recipe,	you	can	also	define
properties	to	create	sliders,	radio	buttons,	description	boxes,	and	so	on.	The
following	URL	reflects	upon	the	procedure	to	create	all	these	custom
components:

https://help.qlik.com/sense/2.0/en-
US/developer/#../Subsystems/Extensions/Content/Howtos/working-with-
custom-properties.htm

https://help.qlik.com/sense/2.0/en-US/developer/#../Subsystems/Extensions/Content/Howtos/working-with-custom-properties.htm


Using	data	with	extensions
In	the	previous	recipes	in	this	chapter	we	created	our	first	Hello	World
extension,	added	properties	and	added	custom	components	to	the	properties.
Now,	it's	time	to	get	your	hands	on	the	data	inside	your	application.

We	will	go	a	step	further	in	this	recipe	and	define	"Dimensions"	and	"Measures"
in	our	JavaScript	code	block.	This	way	we	can	extract	the	data	from	the	tables
and	display	it	in	a	chart	on	our	Qlik	Sense	sheet.



Getting	ready
1.	 Open	Qlik	Sense	hub	and	create	a	new	Qlik	Sense	application.
2.	 Load	the	following	script	in	order	to	auto-generate	some	example	data:

Transactions:

Load	*,

	mod(TransID,26)+1	AS	Period,

	Pick(Ceil(3*Rand1),'Standard','Premium','Discount')	AS	

ProductType,

	Pick(Ceil(6*Rand1),'Apple','Orange','Cherry','Plum',	

'Fig','Pear')	AS	Category,

	Round(1000*Rand()*Rand()*Rand1)	AS	Sales,

	Round(Rand()*Rand1,0.00001)	AS	Margin;

Load	

	date(41275+IterNo()-1)	AS	Date,

	Rand()	AS	Rand1,

	RecNo()	AS	TransID

Autogenerate	1000	While	Rand()<=0.5	or	IterNo()=1;

3.	 Save	the	application.



How	to	do	it…
1.	 Create	a	new	folder	in	the	extension	directory	and	call	it	Qlik	Sense

Cookbook-C7-R3	-	Hello	Data.
2.	 Create	a	new	.qext	file,	as	we	did	in	the	first	recipe	of	this	chapter	and

name	it	Qlik	Sense	Cookbook-C7-R3	-	Hello	Data.qext.	In	the	.qext
file	use	the	following	code:

{

				"name"	:	"Hello	Data",

				"description"	:	"Examples	how	to	use	data	in	visualization	

extensions.",

				"icon"	:	"extension",

				"type"	:	"visualization",

				"version":	"0.1.0",

				"author":	"Your	Name"

}

Next,	create	the	JavaScript	(.js)	file,	as	we	did	previously	in	the	same	folder
location	and	name	it	Qlik	Sense	Cookbook-C7-R3	-	Hello	Data.js.	Enter	the
following	code:

define(	[],

				function	(	)	{

								'use	strict';

								return	{

												definition:	{

																type:	"items",

																component:	"accordion",

																items:	{

																				dimensions:	{uses:	"dimensions"},

																				measures:	{uses:	"measures"},

																				sorting:	{uses:	"sorting"},

																				appearance:	{uses:	"settings"}

																}

												},

												initialProperties:	{

																qHyperCubeDef:	{

																				qDimensions:	[],

																				qMeasures:	[],

																				qInitialDataFetch:	[

																								{

																												qWidth:	10,

																												qHeight:	100

																								}



																				]

																}

												},

												paint:	function	(	$element,	layout	)	{

																var	hc	=	layout.qHyperCube;

																//console.log(	'Data	returned:	',	hc	);

																//	Default	rendering	with	HTML	injection

																$element.empty();

																var	table	=	'<table	border="1">';

	table	+=	'<thead>';

	table	+=	'<tr>';

	for	(var	i	=	0;	i	<	hc.qDimensionInfo.length;	i++)	{

	table	+=	'<th>'	+	hc.qDimensionInfo[i].qFallbackTitle	+	'</th>';}

	for	(var	i	=	0;	i	<	hc.qMeasureInfo.length;	i++)	{

table	+=	'<th>'	+	hc.qMeasureInfo[i].qFallbackTitle	+	'</th>';}

																				table	+=	'</tr>';

												table	+=	'</thead>';

																				table	+=	'<tbody>';

for	(var	r	=	0;	r	<	hc.qDataPages[0].qMatrix.length;	r++)	{

												table	+=	'<tr>';	

for	(var	c	=	0;	c	<	hc.qDataPages[0].qMatrix[r].length;	c++)	{

												table	+=	'<td>';

												table	+=	hc.qDataPages[0].qMatrix[r][c].qText;

												table	+=	'</td>';

																												}

																												table	+=	'</tr>';

																								}

																				table	+=	'</tbody>';

																table	+=	'</table>';

																$element.append(	table	);

												}

								};

				}	);

Go	to	the	App	overview	and	create	a	new	sheet	in	Qlik	Sense.

Go	to	the	 	mode.
From	the	left-hand	side	Assets	panel,	drag	across	the	"Hello	Data"	extension,

which	we	created	just	now.
Title	the	Object	as	Margin	Analysis.
Add	Category	as	a	dimension.
Add	the	following	measure	and	label	it	as	Margin:

Sum(Margin)

The	final	result	will	be	similar	to	the	following	image:	



The	resultant	table	will	look	like	the	following	image.	Also	observe	that	while
in	the	Edit	mode	for	the	object,	the	property	panel	to	the	right	shows	properties,
such	as	Dimensions,	Measures,	Sorting,	and	Appearance;	similar	to	a	normal
Qlik	Sense	object.



How	it	works…
In	the	previous	recipes,	we	have	already	looked	at	the	code	to	define	the
properties	pane.	This	section	of	the	code	allows	us	to	reuse	the	built	in	capability
to	define	dimensions	and	measures	just	like	the	other	objects	in	Qlik	Sense:

	

By	setting	the	default	items	in	the	properties	window	to	include	standard
dimensions	and	measures	options,	we	can	now	add	data	to	the	visualization.	The
data	fields	can	be	added	directly	in	the	object	as	shown	in	the	following	image:



	

As	soon	as	you	add	dimensions	and	measures	to	a	visualization	extension,	the
Qlik	Engine	will	return	what	is	known	as	a	HyperCube.	Although	it	is	a	huge
simplification,	you	can	simply	think	of	it	as	a	table	returned	from	the	engine.

For	a	full	breakdown	of	the	HyperCube	structure,	see	the	QlikSense
development	toolkit	on	qlik.com.	For	now,	we	are	interested	in	three	objects	of
the	HyperCube	and	they	are:

layout.qHyperCube.qDimensionInfo:	used	dimensions
layout.qHyperCube.qMeasureInfo:	used	measures
layout.qHyperCube.qDataPages:	the	result

In	the	print	statement,	we	create	a	basic	HTML	table	with	a	header	for	labels
and	body	for	the	data.	The	skeleton	of	a	basic	HTML	table	is	shown	in	the
following	code:

var	table	=	'<table	border="1">';

		table	+=	'<thead>';

http://qlik.com


		table	+=	'</thead>';

		table	+=	'<tbody>';

		table	+=	'</tbody>';

table	+=	'</table>';

The	first	two	bullet	points	in	the	preceding	section	are	used	for	qDimensionInfo
and	qMeasureInfo.	The	third	bullet	point	is	for	qDataPages:

qDataPages	is	an	array
The	data	is	held	with	qDataPages[0].qDataPages.qMatrix
It	is	also	an	array	of	objects	(the	rows)
Each	holds	an	array	of	other	objects	(the	cells)

The	preceding	skeleton	has	been	completed	in	our	example	and	is	shown	in	the
following	image:

The	following	image	is	the	result	of	the	header:

	

The	following	image	is	the	result	of	the	body:



	



See	also
Creating	an	HTML	visualization	extension	for	Qlik	Sense®



Chapter	8.	What's	New	in	Version
2.1.1?
In	this	chapter,	we	will	focus	on	some	of	the	latest	features	that	have	been
released	in	Qlik	Sense	Version	2.1.1:

Using	the	visual	exploration	capability	in	Qlik	Sense®

Defining	Variables	in	Qlik	Sense®
Exporting	stories	to	MS	PowerPoint
Using	the	Qlik	Dev	Hub	in	Qlik	Sense®	2.1.1
Using	Extension	editor	in	Qlik	Dev	Hub
Using	Qlik	Dev	Hub	to	generate	mashups
Embedding	Qlik	Sense®	application	on	a	website	using	a	single
configurator
Using	the	Qlik	DataMarket
Using	Smart	Search
Creating	dynamic	charts	in	Qlik	Sense®
Using	smart	data	load	profiling



Introduction
This	chapter	deals	with	some	new	functionalities	introduced	in	the	latest	release
of	Qlik	Sense	2.1.1.	While	the	core	essence	of	Qlik	Sense	remains	same,	the	new
functionalities	bring	out	a	more	sophisticated	and	convenient	approach	to
interact	and	build	engaging	applications.	The	new	features	also	boost	the	self-
service	functionality	of	Qlik	Sense	by	providing	options	such	as	Exporting	the
Stories	to	PowerPoint	and	Defining	variables	outside	the	script	using	the	new
Variable	interface.



Using	the	visual	exploration
capability	in	Qlik	Sense®	2.1.1
The	visual	exploration	capability	introduced	in	Qlik	Sense	2.1	strengthens	the
concept	of	self-service	Business	Intelligence.	It	puts	more	power	in	the	hands	of
business	users	or	users	who	are	not	the	original	authors	of	the	application.	It
allows	users	to	change	properties	of	certain	objects	such	as	bar	charts,	scatter
charts,	and	trendline	charts	without	entering	the	Edit	mode	or	changing	the
underlying	content	of	the	application.	The	feature	works	in	all	versions	of	Qlik
Sense,	namely	Qlik	Sense	Desktop,	Qlik	Sense	Enterprise,	and	Qlik	Sense
Cloud.



Getting	ready
This	recipe	will	make	use	of	the	Automotive.qvf	application	available	on	the
Qlik	Sense	hub.	This	application	usually	comes	with	the	default	installation	of
Qlik	Sense	Desktop.	If	you	don't	get	the	application	with	the	installation,	you
can	download	the	same	from	the	source	material	for	this	chapter	available	on	the
Packt	Publishing	website.



How	to	do	it…
1.	 Open	the	Automotive.qvf	application	from	the	hub.
2.	 Open	the	Sales	overview	sheet.
3.	 Hover	over	the	Vehicle	sales	by	region	bar	chart	and	just	beside	the

fullscreen	icon,	you	will	find	the	Exploration	menu	icon.	Click	on	it.

4.	 On	clicking,	the	object	goes	fullscreen	and	while	still	in	the	analysis	mode,
the	Properties	panel	gets	activated.

5.	 In	this	mode,	we	can	change	a	subset	of	properties	such	as	sorting,	colors,
presentation,	and	so	on.

6.	 Change	the	color	scheme	of	the	bar	chart	to	Single	color.
7.	 Once	done,	confirm	the	changes.
8.	 Exit	the	fullscreen	mode.
9.	 The	object	with	the	changed	properties	look	like	this:	



How	it	works…
The	visual	exploration	feature	allows	the	business	user	to	change	the	properties
of	the	onscreen	objects	without	entering	the	Edit	mode.	If	the	user	himself	is	the
author	of	the	application,	then	they	can	keep	the	changes	and	make	them	a	part
of	the	original	application.

An	end	user	who	is	accessing	a	published	application	on	Qlik	Sense	Cloud	or
Qlik	Sense	Enterprise	can	make	the	changes	to	the	properties	using	visual
exploration	techniques	but	can't	keep	them.	In	other	words,	the	changes	remain
only	in	the	users'	session.



There's	more…
The	visual	exploration	capability	can	be	used	only	with	certain	Qlik	Sense
objects.	It	cannot	be	used	with	gauge	charts,	table	objects,	or	pivot	charts.	It
cannot	be	used	with	extension	objects	either.



See	also
Exporting	stories	to	MS	PowerPoint



Defining	variables	in	Qlik	Sense®
For	versions	prior	to	v2.1.1,	Qlik	Sense	does	not	provide	the	option	to	define
variables	outside	the	script	as	you	could	in	the	Variable	Overview	window	in
Qlikview.	With	v2.1.1,	Qlik	has	introduced	a	new	variable	interface	that	enlists
the	existing	variables	created	in	the	script	and	also	provides	the	user	with	the
option	to	create	new	variables.



Getting	ready
For	the	purpose	of	this	recipe,we	will	make	use	of	an	inline	data	load	which
gives	the	sales	information	for	four	countries:

1.	 Create	a	new	Qlik	Sense	application	and	call	it	QS_Variables.
2.	 Load	the	following	script	in	the	application:

Sales:

LOAD	*	INLINE	[

Country,	Sales,COS

USA,	1000,500

UK,	2000,1000

France,	3000,2500

Germany,	4000,4700

];

Let	vRedColor=RGB	(255,	0,	0);

Let	vSales=	'Sum(Sales)';



How	to	do	it…
1.	 Open	the	QS_Variables	application.
2.	 Create	a	new	sheet	called	as	Sales	and	go	to	the	Edit	mode	for	the	sheet.
3.	 While	in	the	Edit	mode,	notice	that	we	have	a	new	icon	 	on	the	lower-

left	corner.	Click	on	the	icon	to	open	the	Variables	interface	window.
4.	 The	Variables	interface	window	lists	all	the	variables	that	we	have	defined

in	the	script:	

At	the	same	time,	it	gives	us	the	option	to	create	new	variables	outside	the

script	directly	in	the	interface	using	the	 	button	at	the	top-right
corner.

Click	on	the	 	button	and	define	a	new	variable,	as	shown	here:	



Click	on	the	Save	button	and	close	the	variable	interface.	Reopen	to	see	the
list	of	variables.
While	still	in	the	Edit	mode,	drag	a	table	object	onto	the	sheet.
Use	Country	as	a	dimension.
Create	a	measure	with	the	following	expression	and	label	it	Sales:

=	$(vSales)

Create	a	second	measure	with	the	following	expression	and	label	it	Cost	of
Sales:

=$(vCOS)

Define	the	background	color	expression	for	Cost	of	Sales	as	follows:

=if([Cost	of	Sales]>Sales,vRedColor,White())

The	resulting	table	would	look	like	this:	





How	it	works…
The	variables	can	be	put	to	an	effective	use	in	the	application	to	define
expressions	as	well	as	to	store	certain	field	values.	If	numeric	values	are	stored
in	the	variables,	then	we	don't	need	to	use	the	$	sign	expansion	while	calling	the
variables.	It	is	however	a	good	practice	to	always	use	the	$	sign,	as	it	is	needed
in	case	of	expression	syntax,	tests	or	literals.

A	point	to	be	noted	in	our	recipe	is	regarding	the	background	color	expression
defined	in	step	no	12.	Cost	of	Sales	and	Sales	are	expression	labels	we
defined	earlier	and	not	fields	from	the	Data	model.

The	background	color	expression	simply	references	the	label	of	the	expressions
containing	the	numbers	we	need.	Referencing	an	existing	expression	label
instead	of	repeating	the	same	code	can	also	benefit	overall	chart	performance.
This	is	because	Qlik	Sense	only	has	to	aggregate	the	values	at	a	base	Data	model
level	once;	thereafter,	the	output	can	be	reused	from	the	cached	memory	where
needed.

The	variables	that	are	defined	in	the	script	are	denoted	by	a	 	symbol	in	the
variable	interface	and	cannot	be	edited	only	through	the	data	load	editor,	as
shown	in	the	following	screenshot:

	



There's	more…
The	variables	can	also	be	defined	in	external	files	such	as	a	text	file	and	then
loaded	into	the	application	through	the	data	load	editor.

In	order	to	try	this,	complete	the	following	steps:

1.	 Download	the	Variables.xlsx	file	from	the	Packt	Publishing	website	and
set	up	a	library	connection	to	the	file	location	called
QlikSenseCookBook_SourceFiles	(to	resemble	the	FROM…	code	used	in	the
following	code).

2.	 Copy	and	load	the	following	code:

VariableDefinitions:

LOAD

				Variable,

				Expression

FROM	[lib://	QlikSenseCookBook_SourceFiles/Variables.xlsx]

(ooxml,	embedded	labels,	table	is	Variables);

Let	vNumberOfRows	=	NoOfRows('VariableDefinitions');

For	vI	=	0	to	(vNumberOfRows	-	1)

Let	vVariable_Name	=	Peek('Variable',vI,'Expression');

Let	[$(vVariable_Name)]	=	Peek('Expression',vI,'Expression');

Next

If	you	now	go	back	to	the	Variable	list	from	the	edit	sheet	window,	you	will	see
a	variable	has	been	created	for	each	row	in	the	Excel	file	attached.	The	code
below	the	FROM	statement	simply	loops	through	each	row	of	the	Excel	file,
creating	a	new	variable	each	time.	The	values	in	column	A	become	the	variable
names	and	the	corresponding	values	in	column	B	are	used	as	the	variable
definitions.



See	also
Using	smart	data	load	profiling



Exporting	stories	to	MS	PowerPoint
Stories	in	Qlik	Sense	are	a	great	feature	that	can	help	create	insights	within	data
and	share	those	insights	with	the	users	in	the	form	of	slideshow.	These
slideshows	are	native	to	Qlikview,	and	hence	only	users	having	access	to	the
Qlik	Sense	application	can	view	the	storyline.

With	Version	2.1.1,	Qlik	has	introduced	the	concept	of	exporting	the	stories	to
PowerPoint	presentations	in	order	to	provide	access	to	users	outside	the	system.
Once	the	storyboard	is	exported,	the	users	can	edit	the	presentation	using	the
standard	formatting	functions	in	MS	PowerPoint.	One	can	also	print	and	share
the	presentation	with	a	larger	audience	base.



Getting	ready
In	Chapter	2,	Visualizations	we	created	a	storyboard	using	the	Automotive.qvf
application.	We	will	be	using	the	same	storyboard	to	analyze	the	export	function.
If	you	don't	have	the	storyboard	saved	in	the	application,	you	can	create	one
again	and	then	proceed	with	the	How	to	do	it...	section.



How	to	do	it…
1.	 Open	the	Automotive.qvf	application	from	Qlik	Sense	hub.

2.	 Click	on	the	 	button	to	display	the	available	stories.
3.	 Open	the	Sales	Overview	story.
4.	 From	the	action	menu	at	the	top,	select	Export	a	story	to	PowerPoint.

5.	 On	clicking,	the	following	PowerPoint	Settings	window	appears:	

Select	the	appropriate	values	for	Slide	size	and	Resolution	and	click	on
Export.
The	export	process	creates	a	hyperlink	that	needs	to	be	used	for	downloading



the	PowerPoint	presentation:	

Click	on	the	hyperlink	to	open	the	storyboard	in	a	PowerPoint	file:	

Click	on	OK	to	open	the	PowerPoint	file,	which	looks	like	this:	





How	it	works…
When	we	click	on	the	hyperlink	in	the	PowerPoint	Settings	window,	Qlik	Sense
uses	the	default	browser	on	the	system	to	download	and	open	the	story	in	a
PowerPoint	file.	The	export	functionality	is	designed	purposefully	for	the	users
who	don't	have	access	to	the	Qlik	Sense	application.	As	with	any	other
PowerPoint	file,	you	can	edit	the	look	and	feel	of	the	objects	using	the
formatting	functions	in	PowerPoint.



There's	more…
Currently,	the	export	functionality	does	not	work	with	the	extension	objects	or
the	embedded	sheets.	But	this	will	be	possible	in	future	versions	of	the	software.

It	has	also	been	noticed	that	sometimes	the	wizard	takes	a	long	time	to	generate
the	hyperlink	for	the	PowerPoint	export.	In	such	a	case,	clear	out	the	cache	in
your	default	browser	and	test	again.



See	also
Defining	variables	in	Qlik	Sense®



Using	the	Qlik	Dev	Hub	in	Qlik
Sense®	2.1.1
Qlik	Sense	Version	2.1.1	combines	the	Single	configurator,	Mashup	editor,	and
the	Extension	editor	under	a	common	single	platform	called	as	the	Qlik	Dev
Hub.	It	formally	replaces	Qlik	Sense	Workbench	used	in	versions	of	Qlik	Sense
prior	to	2.1.1	and	provides	a	nice,	easy	interface	to	work	on	these	different	tools
and	utilities.

Users	who	have	knowledge	of	the	Workbench	editor	with	prior	versions	of	Qlik
Sense	must	keep	in	mind	that	the	basic	principles	of	using	the	Single
configurator	or	creating	mashups	and	extensions	remain	the	same.	However,
there	are	subtle	changes	in	the	individual	interfaces	of	each	of	the	editors	which
we	will	discuss	in	this	recipe.

This	recipe	will	not	extensively	explain	how	to	create	extension	objects	and
mashups	or	how	to	deal	with	Single	configurator.	However,	it	will	introduce	the
user	to	the	change	in	concept	when	working	with	Qlik	Sense	Version	2.1.1.

The	next	few	recipes	will	be	more	descriptive	in	nature	and	explain	the	step-by-
step	process	of	generating	the	extensions	and	mashups	using	the	Qlik	Dev	Hub.
Also,	we	will	discuss	the	process	of	embedding	Qlik	Sense	content	on	a	web
page	using	a	Single	configurator.



Getting	ready
Before	starting	Qlik	Dev	Hub,	make	sure	you	have	Qlik	Sense	Desktop	running
in	the	background.



How	to	do	it…
1.	 Open	Qlik	Dev	Hub	using	the	following	URL:

http://localhost:4848/dev-hub

As	with	the	Qlik	Sense	workbench,	we	will	see	that	the	interface	shows	all	the
available	mashups	and	visualization	extensions	in	the	form	of	tiles.	Along	with
this,	the	left-hand	side	pane	gives	access	to	tools	such	as	Single	configurator,
Mashup	editor,	Extension	editor,	and	Engine	API	Explorer:	

Single	configurator
1.	 Click	on	Single	configurator.	The	following	screen	appears:	

The	Source	panel	on	the	left-hand	side	lists	all	the	available	applications	on



Qlik	Sense	hub	in	the	dropdown.
Select	MFA	interactive.qvf	and	then	click	on	the	Car	sales	by	country

chart:	

As	seen,	the	properties	for	the	chart	get	activated.
The	URL	and	iframe	link	are	located	at	the	top	of	the	Preview	window.	The

single	configurator	allows	the	user	to	access	all	the	Qlik	Sense	applications	and
visualization	objects	and	it	references	them	via	a	URL.	The	URL	can	be	copied
and	used	in	any	web	browser.	The	iframe	link	can	be	used	to	embed	the	chart	in
a	website.
The	Options	for	chart	interaction,	selections,	and	bookmarks	are	in	the	right-

hand	side	panel.	The	URL	and	iframe	links	are	modified	based	on	the	options
selected	by	the	user.

Extensions	editor
1.	 In	order	to	access	the	Extension	editor,	return	to	the	Dev	Hub	page	by

clicking	on	 	under	the	navigation	dropdown.
2.	 Click	on	Extension	editor	in	the	left-hand	side	pane.	Contrary	to	the

workbench	wherein	the	extension	can	be	created	via	the	main	screen,
Extension	editor	opens	up	a	new	window:	



In	order	to	create	a	new	extension,	click	on	Create	new	project	under	the

menu	on	the	toolbar:	
On	clicking,	the	following	window	appears	which	is	exactly	similar	to	the

previous	workbench	version.	Here,	we	can	give	a	name	to	our	new	extension	and
use	the	basic	default	templates	available	with	the	editor:	



Once	we	define	the	name	and	template	for	our	extension	object,	click	on	the	

	button.	This	opens	up	the	tabs	for	the	JavaScript,	.qext,	and	other
related	files	for	the	extension.	If	we	want	to	get	added	functionalities	in	the
extension,	we	can	modify	the	JavaScript	code	here	as	per	the	requirement.
As	we	develop	the	extension	object	in	Extension	editor,	the	Dev	Hub	makes

it	live	in	the	Qlik	Sense	environment.

Mashup	editor
1.	 In	order	to	access	the	Mashup	editor,	return	to	the	Dev	Hub	page	by

clicking	on	 	under	the	navigation	dropdown.
2.	 Click	on	Mashup	editor	in	the	left	pane.
3.	 The	Mashup	editor	interface	is	very	much	similar	to	the	Extension	editor

interface.
4.	 Once	we	define	the	name	and	template	for	the	mashup	and	click	on	

,	the	following	window	appears:	



We	can	select	the	application	and	visualization	objects	from	the	Source	panel
on	the	left.	The	visualization	objects	can	be	laid	out	in	the	grid	by	the	simple
process	of	drag	and	drop.	There	is	a	menu	bar	at	the	top	that	gives	access	to	the
preview	window	as	well	as	the	underlying	files	for	the	mashup.



How	it	works…
The	developer	hub	is	a	single	platform	for	creating	the	extensions	and	mashups
in	Qlik	Sense.	It	gives	access	to	JavaScript	APIs,	which	consist	of	a	number	of
methods	and	properties	to	build	the	custom	visualizations.	The	editors
autogenerate	the	mandatory	files	required	for	the	extension	and	mashups	to
work.



There's	more…
Qlik	Dev	Hub	can	also	be	opened	by	opening	Qlik	Sense	Desktop	and	then
clicking	on	the	dropdown	option	under	the	menu	item	at	the	top:	

	
Single	configurator

While	working	with	the	Single	configurator,	if	we	use	multiple	charts	in	our	web
page,	then	all	the	charts	will	continue	to	interact	with	each	other	similar	to	an	out
of	the	box	Qlik	Sense	environment.

Extension	editor

For	non-programmers,	Qlik	provides	an	easy	way	to	amend	the	extension	script
files.	In	order	to	do	that,	one	can	access	the	example	codes	at
http://help.qlik.com/sense/2.1/en-us/developer/#../Subsystems/Dev-

Hub/Content/Examples/dev-hub-code-

examples.htm%3FTocPath%3DQlik%2520Dev%2520Hub|Examples|_____0.



Select	a	particular	extension	under	Examples	and	then	grab	the	JavaSript	code
and	the	QEXT	code	for	your	extension.	Make	sure	you	also	copy	and	paste	the
code	for	other	related	files	the	JavaScript	is	referring	to,	for	example,	the	.CSS
files	and	the	.PNG	files.



See	also
Using	the	Qlik	DataMarket



Using	Extension	editor	in	Qlik	Dev
Hub
In	the	previous	chapter,	we	discussed	a	recipe	to	develop	a	visualization
extension	in	Qlik	Sense	by	writing	the	code	manually	in	the	.js	and	.qext	files.
One	of	the	easier	methods	to	develop	extension	visualization	in	Qlik	Sense	is
using	Extension	editor	in	Qlik	Dev	Hub.

A	Qlik	Dev	Hub	is	an	integrated	development	toolbox	used	for	building
visualizations	and	mashup	websites.	It	does	not	come	with	a	separate	installation
package,	but	the	editor	and	the	API	libraries	are	provided	with	Qlik	Sense
Desktop.

The	previous	recipe	has	explained	all	the	basics	of	the	Dev	Hub.	This	recipe	will
introduce	the	user	to	the	process	of	building	a	basic	chart	extension	using
Extension	editor	in	Qlik	Dev	Hub.	The	extension	workbench	supports	the	.js,
.qext,	.css,	and	.html	formats.



Getting	ready
For	the	purpose	of	this	recipe,we	will	make	use	of	an	inline	data	load	which
gives	the	sales	information	for	four	countries:

1.	 Create	a	new	Qlik	Sense	application	and	call	it	QS_DevHub_Extensions.
2.	 Load	the	following	script	in	the	application:

Sales:

LOAD	*	INLINE	[

Country,	Sales

USA,	1000

UK,	2000

France,	3000

Germany,	4000

];

Save	the	application	at	this	point	and	move	on	to	build	the	visualization	using
Extension	editor.
Before	starting	Extension	editor,	make	sure	you	have	Qlik	Sense	Desktop

running	in	the	background.



How	to	do	it…
1.	 Open	Qlik	Dev	Hub	using	the	following	URL:

http://localhost:4848/dev-hub

Click	on	the	 	button	available	in	the	left-hand
side	pane	of	Qlik	Dev	Hub.

A	new	Extension	editor	window	opens.	Click	on	the	menu	dropdown	
on	the	toolbar.

Now,	click	on	 	to	create	a	new	project.
Name	the	new	visualization	as	QlikDevHub_Extension.

Under	Template,	select	Chart	template	and	click	on	 :	

This	opens	up	the	tabs	for	the	JavaScript,	.qext,	and	other	related	files	for	the
extension.	If	we	want	to	get	added	functionalities	in	the	extension,	we	can
modify	the	JavaScript	code	here	as	per	requirements.
As	seen,	the	editor	has	automatically	created	the	mandatory	files	and	the	script

required	for	the	extension.
Edit	the	script	on	the	QlikDevHub_Extension.qext	tab	as	follows:

"description":	"Qlik	Sense	extension	using	the	Qlik	Dev	Hub",

"author":	"<User	Name>"



The	result	of	the	preceding	code	will	look	like	this:	

The	QlikDevHub_Extension.js	tab	contains	the	JavaScript	required	for
rendering	the	visualization.	One	can	edit	this	tab	if	required	to	do	so.
Save	and	close	the	window.
Open	the	QS_DevHub_Extensions	application	we	created	in	step	1	of	the

Getting	ready	section	in	Qlik	Sense	Desktop.

Create	a	new	sheet	and	enter	the	Edit	mode	by	clicking	on	 .
The	QlikDevHub_Extension	extension	object	is	now	available	in	the	Assets

panel	on	the	left.	Drag	the	extension	onto	the	sheet.
Add	Country	as	a	dimension.
Add	the	following	measure:

Sum	(Sales)	

Name	the	chart	as	Sales	by	Country.



The	resultant	chart	would	be	as	follows:	



How	it	works…
The	Qlik	Sense	Extension	editor	provides	JavaScript	APIs,	which	consist	of	a
number	of	methods	and	properties	to	build	the	custom	visualizations.	The	editor
autogenerates	the	mandatory	files	required	for	the	extension	to	work.



There's	more…
If	we	want	to	define	custom	styles	for	our	visualization,	we	can	do	so	by	using
one	or	more	CSS	files.	The	content	for	the	CSS	files	first	need	to	be	loaded	to
the	document's	header	or	alternatively	added	as	a	link	to	a	style	sheet	to	the
document's	header.	Styles	can	also	be	defined	using	the	RequireJS	CSS	plugin.

Additional	files	such	as	.css,	.js,	and	.html	can	be	added	using	the	 	button
located	at	the	top-right	hand	corner	of	the	Extension	editor	workspace:	

	



See	also
Using	Qlik	Dev	Hub	to	generate	mashups



Using	Qlik	Dev	Hub	to	generate
mashups
A	mashup	is	a	web	page	consisting	of	content	from	more	than	one	source
displayed	in	a	single	user	interface.	When	we	design	mashups	in	Qlik	Sense,	we
integrate	multiple	random	objects	from	a	Qlik	Sense	application	into	a
predefined	layout.	In	doing	so,	we	use	the	active	content	from	the	Qlik	Sense
application.	Hence,	the	visualizations	get	updated	automatically	when	the	state
of	the	object	changes.

The	Mashup	editor	in	Qlik	Dev	Hub	allows	us	to	build	mashups	using	the
Mashups	API.	These	Mashup	APIs	are	used	to	display	Qlik	Sense	objects	on	a
website	or	web	application	where	one	can	interact	with	the	Qlik	Sense	datasets.



Getting	ready
We	make	use	of	the	Automotive	.qvf	application	for	this	recipe.	This
application	comes	with	the	default	installation	of	Qlik	Sense.	If	not,	it	is
available	for	download	from	the	Packt	Publishing	website.	Before	starting	the
Qlik	Dev	Hub	editor,	make	sure	you	have	the	Qlik	Sense	Desktop	running	in	the
background.



How	to	do	it…
1.	 Open	Qlik	Dev	Hub	using	the	following	URL:

http://localhost:4848/dev-hub

Click	on	the	 	button	available	in	the	left-hand
side	panel	of	the	Qlik	Dev	Hub.
A	new	Mashup	editor	window	opens.

Now	click	on	 	to	create	a	new	project.
Name	the	new	mashup	object	QlikDevHub_Mashup.
Select	the	template	as	Basic	mashup	template	with	absolute	positioning:	

Click	on	 .
Once	we	create	the	mashup,	the	Mashup	editor	window	reopens.	It	consists

of	three	panes.	The	one	on	the	left-hand	side	gives	an	option	to	select	a	Qlik
Sense	application	on	the	hub	and	the	objects	it	may	contain.	The	central	pane
consists	of	the	Preview	window	for	the	Mashup	Layout	and	the	two	main	files
that	help	to	generate	that	layout:	.html	and	.js.	The	Qlik	Sense	content	is	stored
in	the	.html	file,	while	the	.js	script	file	contains	the	code	for	the	mashups.	The
right-hand	side	pane	gives	options	to	add	Lists	and	Hypercubes	to	the	mashup:	



In	the	left-hand	side	pane,	select	the	Automotive.qvf	application	from	the
dropdown.	Once	selected,	objects	within	the	application	will	be	displayed.

Check	 	at	the	bottom	of	the	central	pane.
Scroll	down	to	the	Roadways,	Cars,	and	Countries	sheet	and	drag	the	Filter

pane	within	that	sheet	onto	the	layout.	This	will	display	the	Year	selection	on	the
layout.
Next,	drag	and	drop	the	Length	of	roadways	pie	chart	onto	the	layout.
Scroll	down	to	the	Country	car	data	sheet	and	drag	the	Filter	pane	within	that

sheet	onto	the	layout	on	the	right-hand	side.	This	will	display	the	Territory
selection	on	the	layout.
Drag	and	drop	the	Car	sales	trend	line	chart	onto	the	layout.
The	layout	should	look	like	this:	



In	order	to	preview	the	mashup,	click	on	the	 	button	at	the	bottom	of
the	central	pane.
The	user	can	make	selections	on	the	mashup	page	similar	to	Qlik	Sense.
Click	on	Save.	The	mashup	page	can	be	launched	using	the	Qlik	Dev	Hub

link,	selecting	the	mashup,	and	clicking	on	View.	Alternatively,	the	mashup	link
can	be	shared	amongst	the	users.	For	example,	in	our	case,	it	would	be	like	this:	





How	it	works…
1.	 When	we	select	the	application,	in	our	case,	Automotive.qvf,	the

JavaScript	in	the	QlikDevHub_Mashup.js	file	gets	updated	as	the	following.
Every	new	application	opened	will	add	a	new	line	in	the	open	apps	section:

2.	 When	we	select	the	visualizations	to	display	on	our	mashup	page,	the
QlikDevHub_Mashup.html	page	gets	updated.	By	taking	a	look	at	the	tab,
we	can	see	that	the	code	looks	like	this:





There's	more…
We	can	also	add	lists	to	the	Qlik	Sense	application	using	the	list	builder.	The	lists
are	not	a	part	of	the	Qlik	Sense	application	our	mashup	is	connected	to.	Along
with	the	lists,	we	can	also	add	a	Hypercube	with	specified	dimensions	and
measures	to	further	enhance	our	mashups.

Both	the	options	can	be	found	on	the	right-hand	side	panel	of	the	Mashup
editor	window.



See	also
Embedding	Qlik	Sense®	application	on	a	website	using	a	single
configurator



Embedding	Qlik	Sense®	application
on	a	website	using	a	single
configurator
Qlik	defines	a	Single	configurator	as	a	tool	that	provides	an	easy	way	of	creating
simple	mashup	pages	without	having	to	write	any	code	at	all.	It	helps	to	create	a
URL	that	contains	the	embedded	Qlik	Sense	visualization.	A	user	can	embed	a
sheet,	an	object,	or	even	a	snapshot	from	the	Qlik	Sense	application.	The	URL
can	be	embedded	onto	the	desired	web	page	using	the	iframe	integration	or	the
Div	integration.



Getting	ready
For	this	recipe,	we	will	develop	a	simple	HTML	page	and	then	embed	a	Qlik
Sense	sheet	onto	the	page.

1.	 In	order	to	generate	a	web	page,	copy	and	paste	the	following	script	in	a
text	file:

<html>

<title>My	Web-page</title>

<body	bgcolor="beige">

Qlik	Sense	

<marquee>Embedding	Qlik	Sense	application	in	website	using	

single	configurator!</marquee>

<img	src="http://siliconcloud.com/sc-	

content/uploads/2015/06/qliksense.png"	height="200"	

width="200"></body>

<html>

Save	the	file	and	name	it	QlikDevHub_WebPage.html.
The	preceding	steps	create	a	simple	website	that	displays	a	Qlik	Sense	icon

and	a	rolling	marquee	displaying	Embedding	Qlik	Sense	application	in
website	using	single	configurator!:	

Our	next	step	would	be	to	embed	Qlik	Sense	visualization	on	this	sheet.



How	to	do	it…
1.	 Open	Qlik	Dev	Hub	using	the	following	URL:

http://localhost:4848/dev-hub

Click	on	the	 	button	available	in	the	left-hand
side	panel	of	the	Qlik	Dev	Hub.	A	new	Single	configurator	editor	window
opens.	The	source	panel	on	the	left	lists	all	the	applications	available	on	Qlik
Sense	hub.
From	the	dropdown,	select	the	Automotive.qvf	application.	Once	we	select

the	application,	observe	that	all	the	sheets	and	the	objects	within	the	application
are	listed	underneath.	Any	snapshots	within	the	application	are	also	listed	under
the	Snapshot	tab.
Now,	select	the	Sales	overview	sheet	from	the	list.	On	selecting	this	sheet,	two

more	panes	get	activated	on	the	screen.	The	central	pane	is	a	Preview	window
that	shows	the	selected	sheet	along	with	the	Preview	Object	ID	option	at	the	top
and	a	URL	that	contains	the	HTML	information	on	the	object.
The	right-hand	side	panel	gives	the	user	options	to	activate	or	deactivate

certain	properties	in	the	mashup.	For	example,	show	the	Selections	bar,	Chart
animations,	Interaction,	Bookmarks,	and	so	on:	



Make	the	following	changes	from	the	right-hand	side	panel:
Under	Devhub.general,	ensure	that	Disable	interaction	is	switched	off.
Under	Selections,	ensure	that	the	show	Selection	bar	and	Clear	all
selections	are	switched	on.

The	code	to	be	inserted	within	an	iframe	tag	in	our	HTML	script	for	the	web
page	is	autogenerated	in	the	Iframe	box	just	above	the	Preview	window.
The	code	will	look	something	like	this:

<iframe	src="http://localhost:4848/single/?	

appid=C%3A%5CUsers%5Cnkharpate%5CDocuments%	

5CQlik%5CSense%5CApps%5CAutomotive.qvf&sheet=	

BEUjVL&opt=currsel&select=clearall"	frameborder="0"></iframe>

Copy	and	paste	it	in	between	the	<marquee>	and	<img>	lines	in	the	HTML
script	for	the	web	page.
We	will	slightly	alter	this	code	for	changing	the	height,	width,	and	the

alignment	of	the	frame:

<iframe	src="http://localhost:4848/single/?	

appid=C%3A%5CUsers%5Cnkharpate%5CDocuments%	

5CQlik%5CSense%5CApps%5CAutomotive.qvf&sheet=	

BEUjVL&opt=currsel&select=clearall"	frameborder="0"height="600"	

width="75%"	align="right"></iframe>



The	final	HTML	code	for	the	web	page	should	look	like	this:

<html>

<title>My	Web-page</title>

<body	bgcolor="beige">

Qlik	Sense	

<marquee>Embedding	Qlik	Sense	application	in	website	using	single	

configurator!</marquee>

<iframe	src="http://localhost:4848/single/?appid=C%	

3A%5CUsers%5Cnkharpate%5CDocuments%5CQlik%5CSense%	

5CApps%5CAutomotive.qvf&sheet=BEUjVL&opt=currsel&		select=clearall"	

frameborder="0"height="600"	width="75%"	align="right"></iframe>

<img	src="http://siliconcloud.com/sc-	

content/uploads/2015/06/qliksense.png"	height="200"	width="200">

</body>

<html>

Save	the	changes	made	in	the	document.
Open	the	web	page	to	see	the	embedded	Qlik	Sense	sheet:	



How	it	works…
The	embedded	sheet	on	the	web	page	works	exactly	like	a	sheet	within	Qlik
Sense.	The	user	can	make	any	selection	in	the	charts	and	the	data	would	be
filtered	accordingly.

The	current	selections	are	displayed	at	the	top.	The	charts	contain	active	content,
and	hence	they	are	always	in	sync	with	the	actual	Qlik	Sense	application.



There's	more…
The	iframe	script	inserted	in	the	HTML	page	can	further	be	modified	as
required.	We	can	very	well	add	multiple	objects	from	different	Qlik	Sense
applications	on	the	same	web	page.

Another	good	option	to	explore	in	the	configurator	is	adding	data.

We	can	define	explicit	field	value	selections	within	the	iframe	code.	The	data	on
the	sheet	would	always	adhere	to	these	selections:

	



See	also
Using	Qlik	Dev	Hub	to	generate	mashups



Using	the	Qlik	DataMarket
The	Qlik	DataMarket	allows	you	to	source	additional	data	externally.	This	data
is	provided	by	Qlik	to	enrich	your	current	reporting	data	set.	It	is	a	"data	as	a
service"	cloud	offering,	which	allows	you	to	access	a	collection	of	different
valuable,	up-to-date	and	ready-to-use	datasets.



Getting	ready…
For	the	purpose	of	this	recipe,	we	will	make	use	of	an	inline	data	load	which
gives	the	information	on	sales	and	the	base	currency:

1.	 Create	a	new	Qlik	Sense	application	and	call	it	QS_DataMarket.
2.	 Load	the	following	data	into	the	QlikSense	data	load	editor:

ExampleData:

LOAD	*	INLINE	[

				Base	currency,	Sales

				US	dollar,	6300

];

Save	and	reload	the	application.



How	to	do	it…
1.	 Open	the	QS_	DataMarket	application.
2.	 Create	a	new	sheet	called	Sales	and	go	to	the	Edit	mode	for	the	sheet.
3.	 From	Qlik	Sense	Desktop,	open	the	Data	manager	as	shown	in	the

following	screenshot.	Please	note	that	this	feature	is	only	available	from
Version	2.0	onwards.

The	data	manager	is	a	new	feature	of	Qlik	Sense.	We	will	cover	the
different	aspects	in	other	recipes;	for	now,	let's	look	at	the	Qlik	DataMarket.

1.	 Click	on	the	 	button	located	on	the	left-hand	side	of
the	Data	manager	screen.

2.	 Next,	click	on	the	 	button.
3.	 For	this	example,	we	will	click	on	the	

	option.
4.	 Next,	select	the	



option.
5.	 The	next	screen	allows	you	to	choose	what	data	you	want	to	load.	Select	the

options	as	shown	in	the	following	screenshot:	

Click	on	the	 	button	at	the	bottom-right	corner	of	the
screen.
Once	the	load	has	finished,	go	to	the	application	editor	and	drag	a	KPI	object

from	the	asset	pane	onto	the	main	content	pane.
Create	a	new	master	item	Measure	with	the	name	Sales($)	and	the	following

expression:

Sum(Sales)

Create	a	second	master	item	Measure	with	the	name	Sales	(in	selected
quote	currency)	and	the	following	expression:

Sum	({<[Quote	currency]={$(='['	&	GetFieldSelections([Quote	

currency])	&	']')}>}Sales	*	[Exchange	rate])	

Drag	the	first	and	second	measures	onto	the	KPI	object.	The	final	object
should	look	like	the	following	image:	





How	it	works…
In	this	example,	we	enrich	the	existing	internal	data	set	with	an	external	source.
Here,	we	simply	add	a	euro	conversion	rate	from	our	dollar	amounts	but	we
could	have	added	several	other	currency	conversions.	The	limitations	of	how
much	data	you	can	augment	to	your	internal	data	set	is	based	on	the	data	Qlik
provide	in	the	DataMarket,	and	having	the	right	fields	in	your	internal	data	set	to
cross	reference	to	the	right	DataMarket	field.	The	ones	shown	in	this	example
are	free.	To	get	access	to	even	more	data	sources	in	the	DataMarket,	you	have	to
pay	a	subscription	fee.	The	price	list	for	these	subscriptions	can	be	obtained	from
Qlik.

The	current	offerings	in	the	Qlik	DataMarket	are	broken	down	into	six
categories:

Business
Currency
Demographics
Society
Weather
Economy

These	categories	are	shown	in	the	following	screenshot:



	

Being	able	to	expand	your	own	core	data	with	that	in	the	Qlik	Data	Market
allows	you	to	take	an	outside-in	view	of	the	business	and	its	environment,
helping	you	to	explore	and	connect	market	trends	to	see	opportunities	and
challenges.	Qlik	plans	to	keep	adding	to	the	DataMarket	with	more	sources	in
future	releases.	The	data	sources	are	updated	in	Qlik	as	they	are	updated	in	the
source	systems.	For	example,	exchange	rate	information	will	likely	be	updated
daily,	whereas	country	population	data	is	more	likely	to	be	updated	annually.



See	also
Using	the	Qlik	Dev	Hub	in	Qlik	Sense®	2.1.1



Creating	dynamic	charts	in	Qlik
Sense®
To	increase	the	flexibility	of	a	single	chart	object,	you	can	set	it	up	so	that	the
dimension	used	is	based	on	what	the	user	wants	to	see.	This	is	a	much	more
efficient	use	of	space	for	single	sheets	and	makes	the	whole	experience	much
more	dynamic.



Getting	ready
For	the	purpose	of	this	recipe,	we	will	make	use	of	the	sales	information	for
different	fruits	as	defined	in	the	script:

1.	 Create	a	new	Qlik	Sense	application	and	call	it	QS_DynamicCharts.
2.	 Load	the	following	data	into	the	data	load	editor:

Transactions:

Load	

	Mod(IterNo(),26)+1	AS	Period,

	Pick(Ceil(3*Rand()),'Standard','Premium','Discount')	AS	

ProductType,

	Pick(Ceil(6*Rand()),'Apple','Orange','Cherry','Plum','Fig',	

'Pear')	AS	Category,

	Pick(Ceil(3*Rand()),'Heavy','Medium','Light')	AS	Weight,

	Pick(Ceil(2*Rand()),'2013','2014')	AS	Year,	

	Round(1000*Rand()*Rand()*Rand())	AS	Sales

Autogenerate	20

While	Rand()<=0.5	or	IterNo()=1;

SET	vDimension	=	'GetFieldSelections(Dimensions)';

Dimensions:

LOAD	*	INLINE	[

				Dimensions

				Weight

				ProductType

				Category

				Period

];



How	to	do	it…
1.	 From	the	App	overview,	create	a	new	sheet	and	enter	the	Edit	mode.
2.	 Add	the	field	Dimensions	onto	the	main	content	pane.
3.	 Drag	a	bar	chart	object	onto	the	content	pane.
4.	 Add	the	following	expression	as	a	measure:

Sum(Sales)

5.	 Add	a	following	calculated	dimension	by	clicking	on	the	 	button:

=	['	&	Pick(Match($(vDimension),'Weight','ProductType',	

'Category'),Weight,ProductType,Category)	&	']'

6.	 Enter	one	click	of	the	space	bar	as	the	label	to	make	it	appear	as	if	there	is
no	dimension	label.

7.	 Exit	the	editor	mode	and	select	a	value	in	the	Dimensions	field.
8.	 The	final	product	should	resemble	the	following	screenshot:

	



How	it	works…
In	the	script	loaded	at	the	beginning	of	the	recipe,	we	set	a	variable	called
vDimension.	The	GetFieldSelections()	function	will	return	the	values	selected
in	the	field	we	specify	inside	the	brackets	GetFieldSelections	(Dimensions).
The	Dimensions	field	is	simply	a	hardcoded	list	of	specific	fields	in	the	Data
model.	The	code	we	wrote	in	the	dimension	field	of	the	chart	uses	this	variable
value	to	set	the	dimension	dynamically	to	whatever	value	the	user	picks	in	the
list	box	we	created.



There's	More….
If	you	are	running	Qlik	Sense	2.1.1,	then	you	can	now	enter	expressions	in	the
chart	title	area.	If	so,	enter	the	following	code:

='Showing	Sales	by:	'	&	$(vDimension)

This	displays	the	selected	dimension	in	the	chart	title	dynamically.	If	you	are
running	an	earlier	version	of	Qlik	Sense,	simply	leave	the	label	blank.	After	this,
I	would	suggest	creating	a	textbox	explaining	the	chart,	which	will	display
whatever	the	value	is,	in	the	associated	list	box.	You	can	also	use	the	preceding
expression	in	the	explanation	textbox.



Using	Smart	Search
Smart	Search	is	a	new	feature	of	Qlik	Sense.	As	with	most	search	features,	you
type	in	what	you	are	looking	for	and	a	list	of	possibilities	are	returned.	These	are
based	on	the	field	values	in	your	data.	This	recipe	shows	you	how	to	tailor	what
is	returned	when	performing	a	smart	search.



Getting	ready
For	the	purpose	of	this	recipe,	we	will	make	use	of	an	inline	data	load	which
gives	the	release	information	for	different	labels.	Load	the	following	data	in	the
script	load	editor:

Data:

LOAD	*	INLINE	[

				Label,	DJ,	Next	Album	Release,	Release	Year

				Blunderbuss	Records,	Kevin	Mullaney,	The	Chat,	2016

				Weirdo	Cats,	Heather	McKay,	Unknown,	

				Dragon	Disks,	Rhys	Hayward	,	Unknown,	

				Caped	Capers,	Simon	Conyers,	No	Fashion,	2016

				Shadow	Giggles,	Ski	Mask,	Electro	Ski,	2015

				Fiddle	Pits,	Isabel	Franken,	Boogie	Fingers,	2015

];	



How	to	do	it…

1.	 Open	the	main	content	pane	and	click	on	the	 	button	in	the	top-right
corner.

2.	 Type	ski	into	the	search	box	and	note	that	two	values	are	returned,	as
shown	in	the	following	image:

	
3.	 Now,	go	to	the	script	editor	and	type	in	the	following	code:

Search	Exclude	"Next	Album	Release",	"Release	Year";

4.	 Save	and	reload	the	application.
5.	 Repeat	step	2.	This	time,	only	a	single	value	is	returned	in	the	smart	search

results.



How	it	works…
In	this	example,	we	used	the	Search	Exclude	function	to	restrict	two	fields	from
the	Data	model	we	don't	want	users	to	be	able	to	search	on.	The	fields	are	called
Next	Album	Release	and	Release	Year.	There	is	also	a	Search	Include
function,	where	listing	only	the	fields	you	want	users	to	search	on	is	simpler	than
listing	those	you	don't	want	to	include.	Examples	of	fields	you	would	normally
exclude	are	Key	fields	that	join	the	tables	in	your	Data	model.	Removing
unnecessary	fields	also	helps	with	the	performance	of	searches.



There's	More….
Other	than	just	controlling	what	fields	are	accessible	via	the	smart	search
functionality,	there	are	different	ways	to	perform	a	search.	This	involves	using
special	characters	other	than	just	typing	in	the	literals	you	are	looking	for.
Examples	are	given	in	the	following	table:

Character Example Description

"	" "Orange	Juice" Encapsulating	the	value	in	quotes	makes	Qlik	Sense	search	for	the	whole
word	instead	of	Orange	and	Juice	separately.

+ +Orange	+Juice Finds	strings	that	include	both	words	although	they	can	be	in	any	order.
Such	words	could	be	Orange	and	apple	juice	or	Juice	from	oranges.

~ ~Orange This	is	Fuzzy	Search,	where	the	values	are	ranked	and	sorted	according	to
the	similarity	to	the	search	string.	This	search	only	works	when	selecting
the	search	icon	for	an	individual	field	and	does	not	work	in	the	global
search	at	the	top	of	the	screen.

>,	<,	>=,
<=

=Sum(Sales)>100 Expression	searches	also	only	act	on	a	single	field	similar	to	Fuzzy	Search.
The	results	are	returned	based	on	the	aggregation.	Numeric	searches	such
as	>01/01/2015	also	work	without	an	explicit	aggregation	function	and	can
be	used	to	narrow	down	the	search.

* Oran* The	*	symbol	is	a	wildcard	character	and	will	return	any	values	that	start
with	the	letters	Oran.	The	wildcard	character	replaces	a	single	or	block	of
characters	in	a	search	string.	It	can	be	used	at	the	start	and	middle	of	a
search	string,	for	example,	*Oran,	Oran*,	or	*Oran*.

? Oran?e The	?	character	is	also	a	wildcard	that	represents	a	single	character.

QlikView	also	has	other	types	of	searches,	such	as	Numeric,	Fuzzy,	Expression,
and	Compound	Search.	I	believe	these	are	on	the	road	map,	although	they	are
not	included	in	the	product	to	date.	To	see	if	these	features	have	been	released	in
later	versions	of	Qlik	Sense,	please	refer	to	the	Qlik	Sense	online	help	feature
accessed	via	the	hub.



See	also
Using	smart	data	load	profiling



Using	smart	data	load	profiling
As	you	know	from	the	earlier	chapters	on	accessing	data,	Qlik	Sense	makes
associations	between	tables	using	similar	field	names.	As	of	Qlik	Sense	Version
2.0,	there	is	a	data	profiling	tool	that	can	be	used	to	help	you	make	the	correct
table	associations.



Getting	ready
1.	 Create	a	folder	on	your	local	drive	called	TestData.	For	this	example,	we

will	use	the	C:	drive:	C:\TestData.
2.	 Create	a	folder	library	connection	to	the	directory	above	in	the	data	load

editor.
3.	 Load	the	following	script	into	the	application:

Transactions:

LOAD	DATE(Date#(	TransactionDate,'DD/MM/YYYY'))	as	

TransactionDate	,Sales	INLINE	[

				TransactionDate,	Sales

				01/01/2013,	1000

				02/01/2013,	3000

				03/01/2013,	500

				04/01/2013,	4000

				05/01/2013,	2000

];

Calendar:

LOAD	DATE(Date#(	TransactionDate,'DD/MM/YYYY'))	as	Date,	

Month,Year	INLINE	[

				Date,	Month,	Year

				01/01/2013,	Jan,	2013

				02/01/2013,	Jan,	2013

				03/01/2013,	Jan,	2013

				04/01/2013,	Jan,	2013

				05/01/2013,	Jan,	2013

];

STORE	Transactions	INTO	[lib://TestData/Transactions.txt](txt);

Drop	Table	Transactions;

STORE	Calendar	INTO	[lib://TestData/Calendar.txt](txt);

Drop	Table	Calendar;



How	to	do	it…
1.	 Click	the	Navigation	dropdown	button	on	the	top-left	and	select	the	Data

manager,	as	shown	here:	

Select	 	from	the	menu	bar	on	the	left-hand	side.
Click	on	the	TestData	library	connection	we	established	earlier.
Select	the	Transaction.txt	file	as	shown	here,	and	click	on	the	next	arrow	at

the	bottom	of	the	page:	

You	will	see	a	preview	of	the	data	to	be	loaded.	Click	on	Load	and	finish	at
the	bottom	of	the	page.
Once	loaded,	you	will	return	to	the	data	manager	and	the	transactions	table

will	be	listed	on	the	left.	Let's	load	the	second	table.	Repeat	steps	2,	3,	and	4
only.	Click	on	the	Calendar.txt	data	this	time.

Instead	of	clicking	on	the	Load	and	finish	button,	click	on	the	
button.

Click	on	the	 	option.
Under	the	Rename	fields	option,	click	on	the	button	labeled	TransactionDate.



Click	on	Load	and	finish	in	the	bottom-right	hand	corner.
Close	the	execution	window	and	click	on	Save.
If	you	open	the	Data	model	viewer	from	the	main	hub	menu	now,	the	two

tables	should	now	be	joined,	as	shown	here:	



How	it	works…
The	script	we	loaded	at	the	beginning	of	the	recipe	simply	generates	the	data	we
use	in	the	data	load	editor.	The	profiler	looks	at	these	data	files	to	make
recommendations	on	fields	you	should	use	to	join	the	two	datasets	together.	In
this	example,	there	is	only	one	suggestion	made,	which	is	for	the
TransactionDate	field	and	the	Date	field.

If	there	are	more,	you	can	step	through	the	various	suggestions	using	the	arrows
in	the	load	editor	page.	This	is	shown	in	the	following	screenshot:	

	

Our	example	identified	that	there	is	a	100	percent	match	on	the	values	contained
between	both	of	our	data	sets	but	the	name	of	those	fields	are	different.	As	such,
one	or	both	of	the	fields	need	to	be	renamed	in	order	to	associate	the	tables.	The
fields	were	renamed	automatically	when	we	clicked	on	the	button	labeled
TransactionDate.	We	could	have	entered	a	new	name	for	both	fields	by	typing
in	the	Rename	both	fields	to	box.

There	are	several	other	warnings	the	data	profiler	will	make	you	aware	of,
depending	on	the	data	you	load.	One	example	is	if	there	were	fields	with	the
same	name	but	data	that	didn't	match.	Another	example	is	if	there	are	multiple
possible	connections	you	could	make;	in	this	example,	the	profiler	will
recommend	you	to	either	keep	one	of	the	fields	as	a	key	then	rename	the	others,
or	break	the	table	association.



There's	More….
The	Data	manager	allows	you	to	bring	in	data	and	make	associations	from	a
number	of	sources	without	ever	seeing	a	line	of	code.	The	code	is	still	present,
but	it	is	generated	automatically	and	saved	in	a	system	generated	script	tab.	After
completing	this	recipe,	open	the	data	editor	to	see	the	new	tab,	as	show	in	the

following	image:	

	

It	is	also	worth	making	clear	that	the	data	profiler	works	without	finding	100
percent	matches	on	shared	field	values	between	tables.	To	test	this,	repeat	the
recipe	with	the	following	line	of	code	added	to	the	end	of	the	transactions	table
in	the	Getting	ready	section	of	the	recipe:

6,	06/01/2013,	100

The	profiler	works	in	exactly	the	same	way	as	recommending	the	correct	field
link,	but	now	it	will	inform	you	there	is	a	91%	match	between	the	values
contained	in	both	tables:

	



Conclusion
With	this	we	come	to	the	end	of	this	book.	This	book	is	a	small	effort	to	help
tackle	day-to-day	issues	faced	by	Qlik	Sense	developers.	We	have	introduced	the
users	to	some	of	the	key	traits	of	Qlik	Sense	through	recipes.	The	book	travels
through	the	basics	of	Qlik	Sense	to	more	advanced	scripting,	calculations,	and
extensions.	Keeping	in	mind	the	importance	of	User	Interface	we	have	also	dealt
with	a	few	recipes	related	to	the	best	practices	in	design	of	a	Qlik	Sense
application.

We	don't	undermine	the	fact	that	there	may	be	many	different	ways	to	overcome
the	challenges	discussed	in	some	of	the	recipes	but	we	have	tried	to	present	the
best	approach	in	this	book.

The	knowledge	shared	in	this	book	is	something	that	we	have	experienced	and
learnt	over	the	course	of	many	years	of	business	intelligence	implementations.
We	believe	that	learning	never	ends	and	having	worked	with	Qlik	product	suite
for	so	long,	we	are	still	learning	new	things	every	day.	In	fact,	even	while
writing	this	book,	both	of	us	exchanged	many	ideas,	which	in	a	way	were	helpful
in	expanding	our	knowledge	base.

Having	said	that,	our	learning	is	more	valuable	only	when	it	is	shared	with
others.	This	book	is	the	source	of	sharing	our	thoughts	with	the	wider	world.

We	would	consider	our	efforts	to	be	worthy	if	the	aspiring	as	well	as	experienced
Qlik	Sense	developers	find	our	book	helpful.

Wish	you	an	enjoyable	journey	with	Qlik	Sense..!!



Appendix	A.	Appendix



Keyboard	shortcuts	in	Qlik	Sense®
Desktop
The	following	keyboard	shortcuts	assume	the	use	of	MS	Windows.	For	Mac	OS,
use	Cmd	instead	of	Ctrl:

Shortcut Action

Ctrl	+	P This	prints	the	current	view	or	active	sheet/story.

Ctrl	+	C This	copies	the	selected	item	to	the	clipboard.

Ctrl	+	X This	cuts	the	selected	item	and	copies	it	to	the	clipboard.	When	using	the	Google	Chrome
browser,	if	the	cursor	is	put	in	front	of	a	row	in	the	data	load	editor	or	in	the	expression
editor,	without	selecting	anything,	the	entire	row	is	cut.

Ctrl	+V This	pastes	the	most	recently	copied	item	from	the	clipboard.

Ctrl	+Z Using	this	combination,	you	can	undo	an	action.	You	can	repeat	it	to	undo	earlier	actions.

Ctrl	+Y	(Cmd
+	shift	+	Z	for
Mac	OS)

Using	this	combination,	you	can	redo	actions.

Ctrl	+	H This	opens	the	online	help	in	the	context	of	the	current	function,	while	in	the	data	load
editor	or	the	expression	editor.

Ctrl	+	F This	opens	smart	search.

Ctrl	+	E In	the	sheet	view,	this	opens	and	closes	the	editing	of	the	selected	sheet.

Ctrl	+	S This	saves	changes	to	the	app.

Ctrl	+	O This	opens	an	app	copied	to	the	clipboard	using	Ctrl	+	C.

Ctrl	+	A This	selects	all	the	code	in	the	data	load	editor.



Ctrl	+	D This	deletes	the	content	of	the	current	line	in	the	data	load	editor	or	in	the	expression
editor.

Ctrl	+K This	comments	or	uncomments	the	selected	lines	in	the	data	load	editor.

Ctrl	+	00 This	inserts	a	test	script	in	the	data	load	editor.

Tab This	indents	the	code	in	the	data	load	editor.

Shift	+	Tab This	outdents	the	code	in	the	data	load	editor.

Left	arrow This	navigates	to	the	previous	slide	in	the	storytelling	view.

Right	arrow This	navigates	to	the	next	slide	in	the	storytelling	view.

Up	arrow This	scrolls	up	in	a	table.

Down	arrow This	scrolls	down	in	a	table.

Ctrl	+	left
arrow

This	navigates	to	the	previous	sheet	in	the	sheet	view.

Ctrl	+	right
arrow

This	navigates	to	the	next	sheet	in	the	sheet	view.

Ctrl	+	up
arrow

This	navigates	to	the	first	sheet	of	the	app	in	the	sheet	view.

Ctrl	+	down
arrow

This	navigates	to	the	last	sheet	of	the	app	in	the	sheet	view.

Esc This	exits	play	mode	in	the	storytelling	view.

This	deselects	a	visualization	when	editing	in	the	sheet	view.

This	deselects	an	object.

This	undoes	selections	in	a	visualization.



This	closes	a	dialog	or	window.

Delete This	deletes	the	selected	item.

Backspace This	deletes	the	selected	item.

Enter/Return This	performs	the	actions	for	the	active	option	or	button	(for	example,	in	dialogs).

Ctrl	+	+ Using	this	combination,	you	can	zoom	in.

Ctrl	+	- Using	this	combination,	you	can	zoom	out.

Ctrl	+	0 This	resets	zooming.



Part	3.	Module	3
Predictive	Analytics	Using	Rattle	and	Qlik	Sense

Create	comprehensive	solutions	for	predictive	analysis	using	Rattle	and
share	them	with	Qlik	Sense



Chapter	1.	Getting	Ready	with
Predictive	Analytics
Analytics,	predictive	analytics,	and	data	visualization	are	trendy	topics	today.
The	reasons	are:

Today	a	lot	of	internal	and	external	data	is	available
Technology	to	use	this	data	has	evolved	a	lot
It	is	commonly	accepted	that	there	is	a	lot	of	value	that	can	be	extracted
from	data

As	in	many	trendy	topics,	there	is	a	lot	of	confusion	around	it.	In	this	chapter,	we
will	cover	the	following	concepts:

Introducing	the	key	concepts	of	the	book	and	tools	we're	going	to	use
Defining	analytics,	predictive	analytics,	and	data	visualization
Explaining	the	purpose	of	this	book	and	the	methodology	we'll	follow
Covering	the	installation	of	the	environment	we'll	use	to	create	examples	of
applications	in	each	chapter

After	this	chapter,	we'll	learn	how	to	use	our	data	to	make	predictions	that	will
add	value	to	our	organizations.	Before	starting	a	data	project,	you	always	need	to
understand	how	your	project	will	add	value	to	the	organization.	In	an	analytics
project,	the	two	main	sources	of	value	are	cost	reduction	and	revenue	increase.
When	you're	working	on	a	fraud	detection	project,	your	objective	is	to	reduce
fraud;	this	will	lead	into	a	cost	reduction	that	will	improve	the	margin	of	the
organization.	Finally,	to	understand	the	value	of	your	data	solution,	you	need	to
evaluate	the	cost	of	your	solution.	The	real	value	added	to	an	organization	is	the
difference	between	the	provided	value	and	the	total	cost.

Working	with	data	to	create	predictive	solutions	sounds	very	glamorous,	but
before	that	we'll	learn	how	to	use	Rattle	to	load	data,	to	avoid	some	problems
related	to	the	quality	of	the	data,	and	to	explore	it.	Rattle	is	a	tool	for
statisticians,	and,	sometimes,	we	need	a	tool	that	provides	us	with	a	business
approach	to	data	exploration.	We'll	learn	how	to	use	Qlik	Sense	Desktop	to	do
this.



After	learning	how	to	explore	and	understand	data,	we'll	now	learn	how	to	create
predictive	systems.	We'll	divide	these	systems	into	unsupervised	learning
methods	and	supervised	learning	methods.	We'll	explain	the	difference	later	in
this	book.

To	achieve	a	better	understanding,	in	this	book	we'll	create	three	different
solutions	using	the	most	common	predictive	techniques:	Clustering,	Decision
Trees,	and	Linear	Regression.

To	present	data	to	the	user,	we	need	to	create	an	application	that	helps	the	user	to
understand	the	data	and	take	decisions;	for	this	reason	we'll	look	at	the	basics	of
data	visualization.	Data	Visualization,	Predictive	Analytics	and	most	of	the
topics	of	this	book	are	huge	knowledge	areas.	In	this	book	we'll	introduce	you	to
these	topics	and	at	the	end	of	each	chapter	you	will	find	a	section	called	Further
learning	where	you	will	find	references	to	continue	learning.



Analytics,	predictive	analytics,	and
data	visualization
In	January	2006,	Thomas	H.	Davenport,	a	well-known	American	academic
author,	published	an	article	in	Harvard	Business	Review	called	Competing	on
Analytics.	In	this	article,	the	author	explains	the	need	for	analytics	in	this	way:

"Organizations	are	competing	on	analytics	not	just	because	they	can—
business	today	is	awash	in	data	and	data	crunchers—but	also	because	they
should.	At	a	time	when	firms	in	many	industries	offer	similar	products	and
use	comparable	technologies,	business	processes	are	among	the	last
remaining	points	of	differentiation.	And	analytics	competitors	wring	every
last	drop	of	value	from	those	processes."

After	this	article,	companies	in	different	industries	started	to	learn	how	to	use
traditional	and	new	data	sources	to	gain	competitive	advantages;	but	what	is
analytics?

Today,	the	term	analytics	is	used	to	describe	different	techniques	and	methods
that	extract	new	knowledge	from	data	and	communicate	it.	The	term	comprises
statistics,	data	mining,	machine	learning,	operations	research,	data	visualization,
and	many	other	areas.

An	important	point	is	that	analytics	will	not	provide	any	new	value	or	advantage
by	itself;	it	will	help	people	to	take	better	decisions.	Analytics	is	about	replacing
decisions	based	on	feelings	and	intuition	with	decisions	based	on	data	and
evidence.

Predictive	analytics	is	a	subset	of	analytics	whose	objective	is	to	extract
knowledge	from	data	and	use	it	to	predict	something.	Eric	Siegel	in	his	book
Predictive	Analytics	describes	the	term	as:

"Technology	that	learns	from	experience	(data)	to	predict	the	future
behavior	of	individuals	in	order	to	drive	better	decisions."

Generally,	in	real	life,	an	accurate	prediction	is	not	possible,	but	we	can	extract	a



lot	of	value	from	predictions	with	low	accuracy.	Think	of	an	insurance	company,
they	have	a	lot	of	claims	to	review,	but	have	just	a	few	people	to	do	it.	They
know	that	some	claims	are	fraudulent,	but	they	don't	have	enough	people	and
time	to	review	all	claims.	They	can	randomly	choose	some	claims	or	they	can
develop	a	system	that	selects	the	claims	with	a	higher	probability	of	fraud.	If
their	system	predictions	are	better	than	just	guessing,	they	will	improve	their
fraud	detecting	efforts	and	they	will	save	a	lot	of	money	in	fraudulent	claims.

As	we've	seen,	everything	is	about	helping	people	to	take	better	decisions;	for
this	reason	we've	got	to	communicate	the	insights	we've	discovered	from	data	in
an	easy	to	understand	and	intuitive	way,	especially	when	we	deal	with	complex
problems.	Data	visualization	can	help	us	to	communicate	our	discoveries	to	our
users.	The	term,	data	visualization,	is	used	in	many	disciplines	with	many
different	meanings.	We	use	this	term	to	describe	the	visual	representation	of
data;	our	main	goal	is	to	communicate	information	clearly	and	efficiently	to
business	users.

In	this	introduction,	we've	used	the	term	value	many	times	and	it's	important	to
have	an	intuitive	definition.	We	develop	software	solutions	to	obtain	a	business
benefit;	generally,	we	want	to	increase	income	or	reduce	cost.	This	business
benefit	has	an	economic	value;	the	difference	between	this	economic	value	and
the	cost	of	developing	the	solution	is	the	value	you	will	obtain.

Usually,	a	predictive	analytics	project	follows	some	common	steps	that	we	call
the	predictive	analytics	process:

1.	 Problem	definition:	Before	we	start,	we	need	to	understand	the	business
problem	and	the	goals.

2.	 Extract	and	load	data:	An	analytics	application	starts	with	raw	data	that	is
stored	in	a	database,	files,	or	other	systems.	We	need	to	extract	data	from	its
original	location	and	load	it	into	our	analytics	tools.

3.	 Prepare	data:	Sometimes,	the	data	needs	transformation	because	of	its
format	or	because	of	poor	quality.

4.	 Create	a	model:	In	this	step,	we	will	develop	the	predictive	model.
5.	 Performance	evaluation:	After	creating	the	model,	we'll	evaluate	its

performance.
6.	 Deploy	the	model	and	create	a	visual	application:	In	the	last	step,	we	will

deploy	the	predictive	model	and	create	the	application	for	the	business	user.



The	steps	in	this	process	don't	have	strict	borders;	sometimes,	we	go	back	and
forth	in	the	process.



Purpose	of	the	book
This	is	not	a	technical	guide	about	R	and	Qlik	Sense	integration,	or	a	Rattle
guide	for	software	developers.	This	book	is	an	introduction	to	the	basic
techniques	of	predictive	analytics	and	data	visualization.	We've	written	this	book
for	business	analysts,	and	people	with	an	IT	background,	but	without	analytics
experience.

"Tell	me	and	I	forget,	teach	me	and	I	may	remember,	involve	me	and	I	learn."

--Benjamin	Franklin

We	believe	that	the	best	way	to	learn	is	by	practicing,	and	for	this	reason	this
book	is	organized	around	examples,	which	you	can	do	with	a	simple	Windows
computer.	Don't	be	afraid,	we	will	use	two	software	tools,	Rattle	and	Qlik	Sense
Desktop,	in	order	to	avoid	complex	code.	To	create	the	predictive	analysis,	we'll
use	Rattle	and	for	data	visualization,	we'll	use	Qlik	Sense	Desktop.

There	are	two	ways	of	using	Rattle,	or	R,	and	Qlik	Sense	Desktop	together.
These	are	listed	as	follows:

In	the	first	approach,	it	is	possible	to	integrate	Qlik	Sense	Desktop	and	R.
The	business	users	select	some	data.	Qlik	Sense	Desktop	sends	this	selected
data	to	an	R	server,	the	server	processes	the	data	and	performs	a	prediction.
The	R	server	returns	the	data	to	Qlik	Sense	Desktop,	and	this	shows	the
data	to	the	user.	This	model	has	a	great	advantage—the	interactivity,	but	it
also	has	a	disadvantage;	it	requires	additional	software	to	integrate	the	two
different	environments.
The	second	approach	is	based	on	two	steps.	In	the	first	step,	the	R
environment	loads	the	data,	performs	the	prediction,	and	stores	the	original
data	with	the	prediction.	In	the	second	step,	Qlik	Sense	Desktop	loads	the
data	and	the	prediction,	and	shows	it	to	the	business	user.	This	second
approach	has	a	great	advantage	which	is	simplicity,	but	also	has	a
disadvantage	which	is	the	lack	of	interactivity.

In	this	book,	we'll	use	the	second	approach	because	in	predictive	analytics
choosing	the	appropriate	model	is	the	key.	For	this	reason	we	want	to	focus	on
introducing	you	to	different	models,	avoiding	the	technical	stuff	of	integration.



We'll	use	Rattle	and	Qlik	Sense	Desktop	in	a	two-step	process.	We'll	load	data	in
Rattle	to	enrich	it	with	a	predictive	model	and	then	load	it	in	Qlik	Sense	Desktop
to	share	it	by	creating	data	visualizations.	This	process	is	illustrated	in	the
following	diagram:

	



Introducing	R,	Rattle,	and	Qlik	Sense
Desktop
In	this	section,	we	will	introduce	the	tools	we'll	use	in	this	book:	R,	Rattle,	and
Qlik	Sense	Desktop.

R	is	a	free	programming	language	for	statistics	and	graphics	available	under	the
terms	of	the	Free	Software	Foundation's	General	Public	License	(GNU).	The	R
language	is	widely	accepted	for	statistical	analysis	and	data	mining.	There	is	a
big	community	of	developers	that	develop	new	packages	for	R,	such	as	Rattle.

R	is	a	very	powerful	and	flexible	programming	language,	but	to	create	predictive
models	with	R	you	need	to	be	a	skilled	programmer.	For	this	reason,	we	will	use
Rattle.

Rattle	is	a	Graphical	User	Interface	(GUI)	for	data	mining	developed	by
Graham	Williamson	using	R.	Similar	to	R,	Rattle	is	also	licensed	under	the
GNU.	R	and	Rattle	are	the	predictive	analysis	environments	that	we	will	be
using	in	this	book.

Using	Rattle,	we'll	be	able	to	load	and	prepare	data,	create	a	predictive	model,
and	evaluate	its	performance	without	writing	R	code;	Rattle	will	write	the	code
for	us.

In	order	to	create	a	visual	and	intuitive	application	for	the	business	user,	we'll
use	Qlik	Sense	Desktop,	the	personal	and	free	version	of	Qlik	Sense.	Qlik	Sense
is	a	self-service	data	visualization	tool	developed	by	Qlik.

We'll	use	Qlik	Sense	Desktop	instead	of	Qlik	Sense	Enterprise	because	we	want
to	build	a	free	learning	environment	to	develop	the	examples	of	this	book.	For
the	propose	of	this	book,	Qlik	Sense	Desktop	and	Qlik	Sense	are	very	similar.
When	you	deploy	your	applications	in	Qlik	Sense	Enterprise,	the	platform
provides	you:

Data	governance.
Security
Scalability



High	availability

Qlik	has	two	different	tools	for	data	analysis	and	data	visualization:	QlikView
and	Qlik	Sense.	Each	tool	is	designed	to	solve	a	different	problem:

With	QlikView,	developers	have	a	powerful	tool	to	create	guided	analytic
applications
With	Qlik	Sense,	business	users	can	create	their	own	analysis	and
visualizations	with	drag	and	drop	simplicity

We	will	use	Qlik	Sense	Desktop	instead	of	QlikView	because	the	book	is	written
for	business	users	and	analysts,	and	Qlik	Sense	is	designed	to	provide	business
users	with	the	ability	to	create	visualizations	on	their	data.

Qlik	Sense	has	two	different	editions:
Qlik	Sense	Enterprise,	a	sever	based	edition	for	use	in	organizations.
Qlik	Sense	Desktop,	a	desktop	edition	for	personal	use.
In	this	book	we’ll	use	Qlik	Sense	Desktop	to	complete	the	examples.	This
edition	is	free	for	personal	utilization.

R	and	Rattle	can	be	installed	on	Windows,	Mac	OS,	and	Linux,	but	Qlik	Sense
Desktop	can	only	be	installed	on	a	Windows	machine.	For	this	reason,	we	will
use	a	Windows-based	computer	for	this	book.	Qlik	Sense	Desktop	and	R	load	all
data	into	memory;	we	suggest	that	you	use	a	64-bit	computer	instead	of	a	32-bit
computer.

In	order	to	install	R,	Rattle,	and	Qlik	Sense	Desktop,	you'll	need	administration
rights,	and	an	Internet	connection	to	download	the	software.



Installing	the	environment
In	the	examples,	we'll	use	Rattle	and	Qlik	Sense	Desktop,	but,	as	we've
explained,	Rattle	is	an	R	package	and	we	need	to	install	R	too.	We	will	follow
these	steps:

1.	 Download	and	install	R.
2.	 Download	and	install	Rattle.
3.	 Download	and	install	Qlik	Sense	Desktop.



Downloading	and	installing	R
These	steps	must	be	followed	for	installing	R:

1.	 Go	to	the	homepage	of	R	Project	for	Statistical	Computing	at	www.r-
project.org.

2.	 In	the	navigation	bar,	click	on	Comprehensive	R	Archive	Network
(CRAN)	and	you	will	be	redirected	to	a	list	of	CRAN	mirrors.	Choose	a
download	mirror	that	is	the	closest	to	your	geographic	location,	as	shown
here:	

You	will	reach	a	different	page;	choose	Download	R	for	Windows,	and	in	the
following	page	click	on	install	R	for	the	first	time.
Finally,	you	will	reach	the	download	page.	As	of	writing	this	book,	the	latest

version	for	Windows	was	3.1.2.	Click	on	Download	R	3.1.2	for	Windows	to
download	the	installation	program,	as	shown	in	this	screenshot:	

http://www.r-project.org


Run	the	installation	program,	R-3.1.2-win.exe,	to	start	the	process.
Depending	on	the	level	of	security	of	your	system,	it	will	ask	you	for	permission
to	execute	the	program	and	to	make	modifications	on	your	system.	You	have	to
allow	this	to	start	the	process.
In	the	next	step,	you	have	to	choose	a	language;	choose	English.	For	the	rest

of	the	installation	process,	leave	the	default	options.
When	the	installation	process	finishes,	you	will	have	two	new	icons	on	your

desktop—R	i386	3.1.2	and	R	x64	3.1.2;	use	the	first	one	if	you	are	using	a	32-bit
computer	and	the	second	one	if	you	are	using	a	64-bit	computer:	



Starting	the	R	Console	to	test	your	R
installation
The	R	Console	is	a	window	used	to	interact	with	R	language;	you	can	type
commands	and	functions	here,	and	you	will	see	the	results	in	the	same	window.
We	will	not	focus	on	R,	so	we'll	only	learn	the	commands	needed	to	work	with
Rattle.

The	following	steps	are	needed	to	start	and	close	R	Console:

1.	 Double-click	the	R	icon	to	start	the	R	Console.
2.	 To	exit	the	R	Console,	type	q()	and	press	Enter,	as	shown	here:	

	



Downloading	and	installing	Rattle
Rattle	is	an	R	package,	which	is	a	collection	of	functions	and	data	someone	else
has	developed,	and	we	can	use	it	in	our	programs.	If	you	already	have	some
hands-on	experience	with	R,	then	this	task	should	be	a	much	lighter	task.

Before	starting	with	the	installation,	remember	that	you	need	an	active	Internet
connection.	The	following	are	the	steps	to	install	Rattle:

1.	 We	will	install	Rattle	from	R	Console;	to	open	it	double-click	on	the	R	x64
3.1.1	desktop	icon.

2.	 In	R	Console,	type	install.packages("rattle")	and	press	Enter.	The	R
Console	will	show	you	a	list	of	CRAN	mirrors;	choose	a	download	mirror
that	is	the	closest	to	your	geographic	location	and	R	will	download	the
Rattle	package,	as	shown	here:	

After	you	have	downloaded	it,	type	library(rattle)	and	R	will	load	the
Rattle	package	into	memory,	and	you	will	be	able	to	use	it.	Use	the	rattle()
command	to	start	Rattle:	



Note

Rattle	needs	other	R	packages	to	work	properly,	the	first	time	you	open	Rattle,
the	system	will	ask	your	permission	to	install	some	packages;	in	order	to	execute
Rattle,	you	have	to	accept	the	installation	of	these	packages.

To	exit,	click	on	the	Quit	icon	from	Rattle	GUI	and	type	q()	in	the	R

Console:	

Tip

If	you	are	from	a	non-English	speaking	country,	you've	probably	installed
everything	in	English,	but	Rattle's	texts	appear	in	your	own	language.	Rattle	will
work	fine	in	your	language,	but	this	book	is	written	in	English	and	it	will	refer	to



Rattle's	functions	and	menus	using	English	names.	If	you	prefer	to	execute
Rattle	in	English,	quit	Rattle	and	type	Sys.setenv(LANGUAGE="en")	in	your	R
Console	and	start	Rattle	again.

Tip

Rattle's	menu	now	appears	in	English.



Installing	Qlik	Sense	Desktop
In	order	to	install	Qlik	Sense	Desktop,	you	need	a	64-bit	computer	with	the
following	specifications:

Windows	7	or	Windows	8.x
Administrator	privileges
.NET	Framework	4.0
4	GB	of	RAM	memory
500	MB	of	disk	space
Intel	Core	2	Duo	processor	or	higher

Probably,	you	are	not	sure	if	you	have	.NET	Framework	on	your	computer;	don't
worry	if	you	don't	have	it,	the	installer	will	offer	to	install	it.

The	following	steps	are	used	to	install	Qlik	Sense	Desktop:

1.	 Go	to	the	Qlik	home	page,	http://www.qlik.com.	Click	on	the	Free
Downloads	link	in	the	upper-right	corner.	The	following	page	will	open:	

	
Click	on	the	Get	Qlik	Sense	Desktop	button	to	download	Qlik	Sense

Desktop.
When	the	download	finishes,	execute	the	installation	program	by	double-

clicking	the	file	you've	downloaded:	

http://www.qlik.com


	
The	installation	process	is	very	easy;	you	just	need	to	click	on	INSTALL

when	Qlik	Sense	Desktop	installer	starts	and	accept	the	license	agreement:	



	
Note

In	case	the	installer	prompts	to	install	.NET	Framework	4.0	(if	you	haven't
already	done	so),	then	follow	the	onscreen	instructions	to	install	it.

When	the	installer	finishes,	click	on	Finish	to	exit	the	installation	program.
You'll	find	a	new	Qlik	Sense	Desktop	icon	on	your	desktop.

Tip

Keep	the	installation	program	in	a	safe	directory	on	your	hard	disk.	You	can	use
it	to	repair	your	installation	if	something	happens	and	to	uninstall	Qlik	Sense
Desktop.



Exploring	Qlik	Sense	Desktop
In	this	section,	we	will	get	a	first	taste	of	Qlik	Sense	Desktop.	We	will	open	it
and	do	a	quick	exploration.	After	installing	it,	Qlik	Sense	Desktop	has	three
example	applications	Executive	Dashboard,	Helpdesk	Management,	and
Sales	Discovery.	We	will	explore	the	Executive	Dashboard	application.

Follow	these	steps	to	explore	Qlik	Sense	Desktop:

1.	 Open	Qlik	Sense	Desktop	by	double-clicking	the	Qlik	Sense	Desktop	icon

on	the	desktop:	
When	Qlik	Sense	Desktop	opens,	click	on	the	cross	(highlighted	in	the

following	screenshot)	in	the	central	window	to	close	the	startup	dialog:	

Now,	you	are	in	the	Qlik	Sense	Desktop	hub,	the	main	screen	of	Qlik	Sense
Desktop.	From	this	screen,	the	user	can	open,	access,	and	manage	his
applications.	We've	highlighted	four	different	areas	in	the	hub's	screen:

In	area	1,	you	can	find	the	help	section.
Area	2	is	the	main	section	of	this	screen.	In	this	section,	the	users	have	their



applications.	As	you	already	know,	Qlik	Sense	Desktop	comes	with	three
demo	applications.
In	area	3,	there	is	a	button	to	create	a	new	application	and	two	buttons	to
manage	the	layout.
In	area	4,	you	have	a	button	to	access	QlikCloud	and	a	search	button,	as
shown	here:

We'll	explore	an	application.	Click	on	the	Executive	Dashboard	button	to
open	it.
A	Qlik	Sense	application	is	organized	in	different	sheets,	such	as	a

spreadsheet.	This	application	contains	three	sheets,	and	you	can	always	create	a
new	sheet	by	clicking	in	the	Create	new	sheet	button,	which	is	visible	in	the
following	screenshot:	



Click	on	the	KPI	Dashboard	icon	to	open	this	sheet.	This	sheet	shows	three
Key	Performance	Indicators	(KPI)—Expenses,	Revenue	vs	Last	year,	and
Account	Receivables.	For	each	KPI,	we	see	the	current	level,	a	distribution,	and
temporal	evolution.	At	the	left-hand	side,	there	are	three	filters—Product,
Segment,	and	Customer:	

Using	the	button	located	in	the	top-right	corner,	you	can	toggle	between	the
sheets.	Go	to	the	Sales	Analysis	sheet:	



The	Sales	Analysis	sheet	has	four	filters	in	the	top	area:	Segment,	Region,
Sales	Rep	Name,	and	Product	Group:	

Click	on	the	Region	filter	and	select	Europe;	the	dashboard	will	react	to	show
only	the	data	related	to	Europe.	Confirm	your	selection	by	clicking	the



highlighted	tick	icon:	
Qlik	Sense	keeps	your	selection	in	the	top-left	side	of	the	screen.	You	can

delete	these	filters	by	clicking	on	the	cross	(highlighted	in	the	following

screenshot):	
We'll	come	back	to	Qlik	Sense	in	Chapter	4,	Creating	Your	First	Qlik	Sense

Application;	now	close	the	window	to	exit	Qlik	Sense	Desktop.



Further	learning
In	August	2006,	after	his	famous	article,	Thomas	H.	Davenport	and	Jeanne	G.
Harris	published	a	book	about	the	same	idea:	Competing	on	Analytics:	The	New
Science	of	Winning,	by	Thomas	H.	Davenport	and	Jeanne	G.	Harris,	Harvard
Business	School	Press.

A	good	place	to	understand	all	the	power	of	predictive	analytics	is	the	book	by
Eric	Siegel.	This	book	contains	147	examples	of	predictive	analytics	in	its
central	pages:	Predictive	Analytics:	the	power	to	predict	who	will	click,	buy,	lie
or	die,	Eric	Siegel,	John	Wiley	&	Sons,	Inc.

We	will	not	cover	R	Language	in	this	book.	If	you	want	to	learn	how	to	program
in	R,	I	recommend	that	you	read	the	following	book:	Statistical	Analysis	with	R,
John	M.	Quick,	Packt	Publishing.

We'll	come	back	to	Qlik	Sense	Desktop	in	Chapter	4,	Creating	Your	First	Qlik
Sense	Application.	If	you	want	to	be	more	familiar	with	Qlik	Sense,	you	can	start
here	www.qlik.com/en-US/sense/gettingstarted.

http://www.qlik.com/en-US/sense/gettingstarted


Summary
In	this	chapter,	we've	introduced	analytics	as	a	process	that	starts	with	raw	data
and	creates	new	knowledge	to	help	people	to	take	better	decisions.

We	also	defined	predictive	analytics	as	a	process	that	learns	to	create	predictions
from	the	data.	Finally,	we've	defined	data	visualization	as	a	technology	that	will
help	us	to	communicate	data-based	knowledge	more	efficiently.

After	introducing	the	key	concepts	of	the	book,	we've	also	described	R,	Rattle,
and	Qlik	Sense,	the	tools	we'll	use	to	build	the	examples.	And	finally,	we've
installed	the	environment.

In	Chapter	2,	Handling	Docker	Containers,	we'll	explain	how	to	load	data	into
Rattle	and	how	we	can	use	Rattle	to	transform	it.



Chapter	2.	Preparing	Your	Data
The	French	term	mise	en	place	is	used	in	professional	kitchens	to	describe	the
practice	of	chefs	organizing	and	arranging	the	ingredients	up	to	a	point	where	it
is	ready	to	be	used.	It	may	be	as	simple	as	washing	and	picking	herbs	into
individual	leaves	or	chopping	vegetables,	or	as	complicated	as	caramelizing
onions	or	slow	cooking	meats.

In	the	same	way,	before	we	start	cooking	the	data	or	building	a	predictive	model,
we	need	to	prepare	the	ingredients-the	data.	Our	preparation	covers	three
different	tasks:

Loading	the	data	into	the	analytic	tool
Exploring	the	data	to	understand	it	and	to	find	quality	problems	with	it
Transforming	the	data	to	fix	the	quality	problems

We	say	that	the	quality	of	data	is	high	when	it's	appropriate	for	a	specific	use.	In
this	chapter,	we'll	describe	characteristics	of	data	related	to	its	quality.

As	we've	seen,	our	mise	en	place	has	three	steps.	After	loading	the	data,	we	need
to	explore	it	and	transform	it.	Exploring	and	transforming	is	an	iterative	process,
but	in	this	book,	we'll	divide	it	in	two	different	steps	for	clarity.

In	this	chapter,	we'll	discuss	the	following	topics:

Datasets	and	types	of	variables
Data	quality
Loading	data	into	Rattle
Assigning	roles	to	the	variables
Transforming	variables	to	solve	data	quality	problems	and	to	improve	data
format	of	our	predictive	model

In	this	chapter,	we'll	cover	how	we	explore	the	data	to	understand	it	and	find
quality	problems.



Datasets,	observations,	and	variables
A	dataset	is	a	collection	of	data	that	we're	going	to	use	to	create	new
predictions.	There	are	different	kinds	of	datasets.	When	we	use	a	dataset	for
predictive	analytics,	we	can	consider	a	dataset	like	a	table	with	columns	and
rows.

In	a	real-life	problem,	our	dataset	would	be	related	to	the	problem	we	want	to
solve.	If	we	want	to	predict	which	customer	is	most	likely	to	buy	a	product,	our
dataset	would	probably	contain	customer	and	historic	sales	data.	When	we're
learning,	we	need	to	find	an	appropriate	dataset	for	our	learning	purposes.	You
can	find	a	lot	of	example	datasets	on	the	Internet;	in	this	chapter,	and	in	the
following	one,	we're	going	to	use	the	Titanic	passenger	list	as	a	dataset	that	has
been	taken	from	Kaggle.

Note

Kaggle	is	the	world's	largest	community	of	data	scientists.	On	this	website,	you
can	even	find	data	science	competitions.	We're	not	going	to	use	the	term	data
science,	in	this	book,	because	there	are	a	lot	of	new	terms	around	analytics	and
we	want	to	focus	just	on	a	few	to	avoid	noise.	Currently,	we	use	this	term	to	refer
to	an	engineering	area	dedicated	to	collect,	clean,	and	manipulate	data	to
discover	new	knowledge.	On	www.kaggle.com,	you	can	find	different	types	of
competitions;	there	are	introductory	competitions	for	beginners	and	competitions
with	monetary	prices.	You	can	access	a	competition,	download	the	data	and	the
problem	description,	and	create	your	own	solutions.	An	example	of	an
introductory	Kaggle	competition	is	Titanic:	Machine	Learning	from	Disaster.
You	can	download	this	dataset	at	https://www.kaggle.com/c/titanic-
gettingStarted.	We're	going	to	use	this	dataset	in	this	chapter	and	in	Chapter	3,
Exploring	and	Understanding	Your	Data.

A	dataset	is	a	matrix	where	each	row	is	an	observation	or	member	of	the	dataset.
In	the	Titanic	passenger	list,	each	observation	contains	the	data	related	to	a
passenger.	In	a	dataset,	each	column	is	a	particular	variable.	In	the	passenger	list,
the	column	Sex	is	a	variable.	You	can	see	a	part	of	the	Titanic	passenger	list	in
the	following	screenshot:	

http://www.kaggle.com
https://www.kaggle.com/c/titanic-gettingStarted


	

Before	we	start,	we	need	to	understand	our	dataset.	When	we	download	a	dataset
from	the	Web,	it	usually	has	a	variable	description	document.

The	following	is	the	variable	description	for	our	dataset:

Survived:	If	the	passenger	survived,	the	value	of	this	variable	is	set	to	1,
and	if	the	passenger	did	not	survive,	it	is	set	to	0.
Pclass:	This	stands	for	the	class	the	passenger	was	travelling	by.	This
variable	can	have	three	possible	values:	1,	2,	and	3	(1	=	first	class;	2	=
second	class;	3	=	third	class).
Name:	This	variable	holds	the	name	of	the	passenger.
Sex:	This	variable	has	two	possible	values	male	or	female.
Age:	This	variable	holds	the	age	of	the	passenger.
SibSp:	This	holds	the	number	of	siblings/spouses	aboard.
Parch:	This	holds	the	number	of	parents/children	aboard.
Ticket:	This	holds	the	ticket	number.
Fare:	This	variable	holds	the	passenger's	fare.
Cabin:	This	variable	holds	the	cabin	number.
Embarked:	This	is	the	port	of	embarkation.	This	variable	has	three
possible	values:	C,	Q,	and	S	(C	=	Cherbourg;	Q	=	Queenstown;	S	=
Southampton).

For	predictive	purposes,	there	are	two	kinds	of	variables:

Output	variables	or	target	variables:	These	are	the	variables	we	want	to
predict.	In	the	passenger	list,	the	variable	Survived	is	an	output	variable.
This	means	that	we	want	to	predict	if	a	passenger	will	survive	the	sinking.
Input	variables:	These	are	the	variables	we'll	use	to	create	a	prediction.	In
the	passenger	list,	the	variable	sex	is	an	input	variable.



Rattle	refers	to	output	variables	as	target	variables.	To	avoid	confusion,	we're
going	to	use	the	term	target	variable	throughout	this	book.	In	this	dataset,	we've
ten	input	variables	(Pclass,	Name,	Sex,	Age,	SibSp,	Parch,	Ticket,	Fare,
Cabin,	and	Embarked)	that	we	want	to	use	to	predict	if	this	person	is	a
potential	customer	or	not.	So	in	this	example,	our	target	variable	is	Survived.

In	Titanic:	Machine	Learning	from	Disaster,	the	passenger	list	is	divided	into
two	CSV	files:	train.csv	and	test.csv.	The	file	train.csv	contains	891
observations	or	passengers;	for	each	observation,	we	have	a	value	for	the
variable	Survived.	It	means	that	we	know	if	the	passenger	survived	or	not.	The
second	file,	test.csv,	contains	only	418	customers,	but	in	this	file,	we	don't
have	the	variable	Survived.	This	means	that	we	don't	know	if	the	passenger
survived	or	not.	The	objective	of	the	competition	is	to	use	the	training	file	to
create	a	model	that	predicts	the	value	of	the	Survived	variable	in	the	test	file.
For	this	reason,	the	variable	Survived	is	the	target	variable.

Rattle	distinguishes	two	types	of	variables—numeric	and	categorical.	A	numeric
variable	describes	a	numerically	measured	value.	In	this	dataset,	Age,	SibSp,
Parch,	and	Fare	are	numeric	variables.

A	categorical	variable	is	a	variable	that	can	be	grouped	into	different	categories.
There	are	two	types	of	categorical	variables—ordinal	and	nominal.	In	an	ordinal
categorical	variable	the	categories	are	represented	by	a	number.	In	our	dataset,
Pclass	is	an	ordinal	categorical	variable	with	three	different	categories	or
possible	values	1,	2,	and	3.

In	a	nominal	categorical	variable,	the	group	is	represented	by	a	word	label.	In
this	dataset,	Sex	is	an	example	of	this	type.	This	variable	has	only	two	possible
values,	and	the	values	are	the	label,	in	this	case,	male	and	female.



Loading	data
In	Rattle,	you	have	to	explicitly	declare	the	role	of	each	variable.	A	variable	can
have	five	different	roles:

Input:	The	prediction	process	will	use	input	variables	to	predict	the	value
of	the	target	variable.
Target:	The	target	variable	is	the	output	of	our	model.
Risk:	The	risk	variable	is	a	measure	of	the	target	variable.
Ident	or	Identifier:	An	identifier	is	a	variable	that	identifies	a	unique
occurrence	of	an	object.	In	our	preceding	example,	the	variable	Person	is
an	identifier	that	identifies	a	unique	person.
Ignore:	A	variable	marked	Ignore	will	be	ignored	by	the	model.	We'll	come
back	to	this	role	later-some	variables	can	create	noise	and	decrease	the
performance	of	your	predictive	model.

Rattle	can	load	data	from	many	data	sources.	Here	are	some	options:

Use	the	Spreadsheet	option	to	load	data	from	a	Comma	Separated	Value
(CSV)	file.
Open	Database	Connectivity	(ODBC)	is	a	standard	to	define	database
connectivity.	Using	this	standard,	you	can	load	from	most	common
databases.	This	will	allow	you	to	load	data	from	ERP,	CRM,	data
warehouse	systems,	and	others.
Use	Attribute-Relation	File	Format	(ARFF)	to	load	data	from	Weka	files.
Weka	is	a	machine	learning	software	written	in	Java.
You	can	also	load	R	Datasets;	these	are	tables	loaded	in	memory	using	R.
Currently,	Rattle	supports	R	data	frames.
The	RData	file	option	allows	you	to	load	an	R	Dataset	that	has	been	saved
in	a	file,	usually	with	the	.Rdata	extension.
With	the	Library	option,	Rattle	can	load	sample	datasets	provided	by	R
packages.
The	Corpus	option	allows	loading	and	processing	a	folder	of	documents.
In	the	following	screenshot,	you	can	see	a	Script	option,	but	this	option	is
not	implemented.	It	will	be	available	in	a	future	version.

In	this	book,	we're	going	to	load	data	from	the	CSV	files	to	explain	Rattle's
functionalities.	CSV	is	widely	used	to	load	data,	and	we'll	find	example	datasets



on	the	Internet	as	CSV	files.



Loading	a	CSV	File
As	we've	seen	before,	we'll	use	a	CSV	file	from	Kaggle	to	learn	how	to	load	a
dataset	into	Rattle.	Download	the	file	train.csv	from	the	competition	page	at
http://www.kaggle.com/c/titanic-gettingStarted.

The	steps	to	load	the	train.csv	file	are	as	follows:

1.	 Open	Rattle	and	go	to	the	Data	tab:	

	
Select	Spreadsheet	as	the	data	source	and	click	on	the	Filename	folder	icon.
Select	the	file	train.csv	and	click	on	Open:	

http://www.kaggle.com/c/titanic-gettingStarted


	
Finally,	click	the	Execute	button	to	load	the	dataset:	

	

Rattle	loads	the	data	from	the	file,	analyzes	it,	and	guesses	the	structure	of	the
dataset.	Now	we	can	start	exploring	the	structure	of	our	data.	In	the	Rattle
window,	we	can	see	that	the	loaded	dataset	has	891	observations	with	nine	input
variables	and	Survived	as	the	target	variable.	We	can	change	the	role	of	each
variable	with	the	radio	buttons.	Note	that	Age,	Cabin,	and	Embarked	have
missing	values:	



	

We'll	focus	on	these	missing	values	in	the	next	section	of	this	chapter.

The	objective	of	this	dataset	is	to	predict	whether	or	not	a	passenger	will	survive
the	sinking	of	the	Titanic.	Our	target	variable	is	survived	and	has	two	possible
values:

0	(not	survived)
1	(survived)

The	variable	name	is	an	identifier	that	identifies	a	unique	passenger.	For	this
reason,	it	has	891	observations	and	891	different	values.

Make	changes	in	the	roles	of	the	different	variables	and	click	on	the	Execute
button	to	update	the	data.	To	save	your	work,	click	on	the	Save	button	and	give



it	an	appropriate	file	name.

The	Save	button	will	save	our	work,	but	it	will	not	modify	the	data	source	(the
CSV	file).

	

In	Rattle's	Data	tab,	there	are	two	useful	buttons—View	and	Edit.	With	these
buttons,	you	can	edit	and	visualize	your	data.	We	also	have	a	Partition	check
box,	as	you	can	see	in	the	following	screenshot:	

	

Generally,	we	split	the	datasets	into	three	subsets	of	data—a	training	dataset,	a
validation	dataset,	and	a	testing	dataset.	We're	going	to	leave	this	option	for	now
and	we'll	come	back	to	partitioning	in	Chapter	5,	Clustering	and	Other
Unsupervised	Learning	Methods,	and	Chapter	6,	Decision	Trees	and	Other
Supervised	Learning	Methods.

The	last	option	in	data	loading	is	Weight	Calculator.	This	option	allows	us	to
enter	a	formula	to	give	more	importance	to	some	observations.

Tip

You	can	assign	roles	to	variables	automatically	by	modifying	their	names	in	the
data	source.	When	you	load	a	variable	with	a	name	that	starts	with	ID,	Rattle
marks	it	automatically	as	having	a	role	of	ident.	You	can	also	mark	a	variable	as
target,	risk,	and	ignore	using	Target,	Risk,	and	Ignore.



Transforming	data
Data	transformation	and	exploratory	data	analysis	are	two	iterative	steps.	The
objective	is	to	improve	the	data	quality	to	create	a	more	accurate	model.	In	order
to	transform	your	data,	you	need	to	understand	it	first.	So,	in	real	life,	you	can
explore	and	transform	iteratively	until	you	are	fine	with	your	data.

For	simplicity,	we'll	cover	data	transformation	in	this	chapter	and	data
exploration	in	the	next	chapter.

Data	mining	experts	usually	spend	a	lot	of	time	preparing	data	before	they	start
modeling.	Preparing	data	is	not	as	glamorous	as	creating	predictive	models	but	it
has	a	great	impact	in	the	model	performance.	So,	be	patient	and	spend	time	to
create	a	good	dataset.

When	we	execute	a	transformation	in	a	variable,	Rattle	doesn't	modify	the
original	variable.	Rattle	creates	a	new	variable	with	a	prefix	that	indicates	the
performed	transformation	and	the	name	of	the	original	variable.	An	example	can
be	seen	in	the	following	screenshot:	

	

We	see	the	list	of	variables	contained	in	Rattle	after	applying	a	rank
transformation	to	the	variable	fare.



Transforming	data	with	Rattle
Rattle's	Transform	tab	offers	four	different	types	of	transformations:

Rescale
Impute
Recode
Cleanup

These	transformation	options	are	shown	in	the	following	screenshot:	

	
Rescaling	data

In	real	life,	measures	use	different	scales;	for	example,	in	the	Titanic	passenger
list,	the	minimum	value	for	the	variable	Age	is	0.42	and	the	maximum	value	is
80.	For	the	variable	Fare,	the	minimum	is	0	and	the	maximum	is	512.3.	For	this
reason,	a	difference	of	10	is	a	big	difference	for	the	variable	Age	and	a	small
difference	for	Fare.	Some	algorithms	and	techniques	need	all	variables	with	the
same	scale,	and	we	need	to	adjust	values	measured	on	different	scales	to	a
common	scale.	Rescaling	is	the	process	of	adjusting	the	numeric	values	of	a
variable	to	a	different	scale.

In	Rattle,	the	Rescale	option	has	two	sub-options—Normalize	and	Order.	To
Normalize	variables	means	to	modify	the	values	of	the	different	observations	to
fit	into	a	scale.	The	most	common	normalization	is	Scale	[0-1].	If	we	apply	this
option	to	a	variable,	Rattle	will	map	its	values	between	0	and	1.	In	the	following
table,	we've	used	five	values	of	the	variable	Age	to	create	an	example.	As	we've
seen,	the	minimum	value	is	0	and	the	maximum	80.	Rescaling	the	variable	from
0	to	1,	the	minimum	value	is	mapped	to	0	and	the	maximum	to	1.	The



intermediate	values	are	mapped	in	between	0	and	1,	as	shown	in	the	following
table:

Age New	Value

0.42 0

5 0.057552149

19 0.233475748

54 0.673284745

80 1

Rattle	provides	two	different	Order	transformations—Rank	and	Interval.	With
the	Rank	option,	Rattle	will	convert	variable	values	to	a	rank	assigning	1	to	the
minimum	value	of	the	variable.	We	use	this	option	when	we're	more	interested	in
the	relative	position	of	value	in	the	distribution	than	in	the	real	value.

In	our	example,	the	first	value	of	the	variable	age	is	0.42	with	the	first	position	in
our	rank.	The	second	position	in	the	rank	is	for	the	value	0.67,	and	the	third	and
fourth	position	in	the	rank	has	the	same	value,	0.75.	In	this	case,	Rattle	doesn't
use	position	three	and	four,	it	uses	3.5,	as	shown	in	the	following	table:

Age Rank

0.42 1

0.67 2

0.75 3.5

0.75 3.5

0.83 5.5



Finally,	Interval	groups	the	values	into	different	groups.	Use	the	input	box	to
choose	the	number	of	groups	you	want	to	create,	as	shown	in	the	following

screenshot:	

	

Using	Interval	and	the	value	10	for	Number	of	Groups,	Rattle	will	create	10
groups	and	will	label	the	groups	0,	1,	2,	3,	4,	5,	6,	7,	8,	and	9.	Depending	on
their	value,	Rattle	will	map	each	observation	to	a	different	group.	The	minimum
value	0.4	will	be	in	the	group	0;	80,	the	maximum	value,	will	be	mapped	to
group	9.

Using	the	Impute	option	to	deal	with	missing	values

Sometimes,	you	will	have	incomplete	observations	with	missing	values	for	some
variables.	There	are	different	reasons	for	missing	values.	Sometimes,	data	is
manually	collected,	and	not	everybody	collects	it	with	the	same	accuracy.
Sometimes	data	is	collected	from	many	sensors,	and	one	of	them	could	be
temporarily	out	of	order.

Detecting	missing	values	could	be	difficult.	In	R,	the	value	NA,	which	means
Not	Available,	indicates	a	missing	value,	but	there	are	a	lot	of	data	sources	that
codify	a	missing	value	with	a	concrete	value.	For	numeric	values,	0	or	99999
could	identify	a	missing	value.	You'll	need	to	explore	your	data	carefully	to	find
the	real	missing	values.	As	we	have	seen,	in	the	Titanic	dataset,	variables	Age,
Cabin,	and	Embarked	have	missing	values.

With	the	Impute	option,	we	can	choose	how	we	want	to	fill	the	missing	values
in	our	variables,	as	shown	in	this	screenshot:	

	



Rattle	allows	us	to	apply	the	following	transformations	to	the	missing	values:

Zero/Missing:	Using	this	option,	Rattle	will	replace	all	missing	values	in	a
numeric	variable	with	0	and	missing	values	in	a	categorical	variable	with
Missing.
Mean:	This	option	will	use	the	mean	to	fill	missing	values	in	a	numeric
variable.	Of	course,	we	cannot	use	this	option	with	a	categorical	variable.
Median:	With	this	option,	we	can	replace	missing	values	with	the	median.
As	with	the	Mean	option,	this	option	can	only	be	used	with	numeric
variables.
Mode:	Using	the	Mode	option,	Rattle	will	replace	missing	values	with	the
most	frequent	value.	This	option	can	be	used	with	both	numeric	as	well	as
categorical	variables.
Constant:	This	option	will	allow	us	to	enter	a	constant	value	to	replace
missing	values.	Like	the	Mode	option,	we	can	use	it	with	both	numeric	as
well	as	categorical	variables.

Rattle	has	five	different	options,	and	if	you	need	to	use	a	different	approach,
you'll	need	to	code	in	R,	or	fill	the	missing	values	before	loading	data	into
Rattle.

Now	you	probably	must	be	thinking	that	the	Median,	Mean,	and	Mode	options
are	very	similar,	and	you	don't	know	how	to	choose	among	the	three	different
options.	To	choose	one	of	these	options,	we	need	to	see	how	values	are
distributed	into	the	different	observations.	We'll	see,	in	the	next	chapter,	that	the
histogram	is	the	best	plot	to	see	the	value	distribution	in	a	variable,	and	you'll
learn	how	to	plot	a	histogram	using	Rattle.

To	understand	how	to	fill	the	missing	values,	you	can	analyze	the	histogram	of
the	original	variable,	then	apply	a	transformation	and	analyze	the	new	histogram.
With	the	example	of	the	variable	Age,	we've	created	a	histogram	with	the
original	variable	(left-hand	side).	We've	applied	a	Zero	imputation	and	created	a
new	histogram.	When	we	apply	a	Zero	imputation,	we	fill	those	values	with	all
missing	values.	You	will	have	something	like	the	following	graph:	



	

The	histogram	on	the	left	shows	the	shape	of	the	original	variable	Age;	the	mean
is	29.7	years.	In	the	Titanic	dataset,	the	variable	Age	has	177	missing	values.
During	the	imputation,	these	177	values	are	set	to	0.	This	moves	the	mean	of	the
distribution	to	23.8.	In	this	case,	you	can	see	a	lot	of	people	with	0	years.	As
we'll	see,	the	performance	of	some	techniques	or	algorithms	can	be	affected	by
this	change	in	the	distribution	shape.

Now,	we	can	apply	Mean	imputation	(fill	the	missing	values	with	the	mean),
Median	imputation	(fill	the	missing	values	with	the	median),	or	Mode
imputation	(fill	the	missing	values	with	mode).

These	three	screenshots	show	the	distribution	of	the	Age	variable	histogram	after
applying	a	Mean	imputation	(upper),	a	Median	imputation	(middle),	and	a
Mode	imputation	(lower):	



	

Additionally,	you	have	to	consider	deleting	all	observations	with	missing	values
in	the	variable	Age.	This	variable	has	177	missing	values	in	891	observations;
filling	the	gaps	with	a	fixed	value	will	probably	produce	a	bad	performance.



Recoding	variables

We	use	the	Recode	option	to	transform	the	values	of	variables	by	distributing	the
values	into	different	bins	or	by	changing	the	type	of	the	variable.

Binning

Some	models	and	algorithms	only	work	with	categorical	variables.	Binning	is	an
operation	that	can	be	useful	to	transform	a	numeric	variable	into	a	categorical
variable.	The	original	values	that	fall	in	a	bin	take	the	value	that	represents	that
bin.

This	is	how	we	bin	a	variable:

Divide	the	range	of	values	into	a	series	of	small	intervals	or	bins
Distribute	each	value	into	its	interval	or	bin

To	define	the	groups	or	bins,	we	have	three	options:

Use	Quantiles	to	create	groups	with	the	same	number	of	observations
Use	KMeans	to	create	groups	of	members	based	on	the	distance	of	the
values
Choose	Equal	Width	to	distribute	the	values	of	a	variable	into	groups	of
the	same	width,	as	shown	in	this	screenshot:	

	

Like	in	this	screenshot,	try	to	apply	an	Equal	With	transformation	(under
Binning)	to	the	variable	age.	Rattle	will	create	10	groups	and	will	place	each
observation	in	a	group.

To	distribute	values	into	different	groups,	you	can	also	select	Type	as	Rescale,
and	then	Order	as	Interval	and	set	Number	of	Groups	as	10,	as	shown	in	the
following	screenshot:	



	

What	is	the	difference	between	the	two	options?	The	variable	Age	is	a	numeric
variable;	when	you	use	Recode,	the	result	is	a	numeric	variable.	If	you	use
Binning,	the	new	variable	is	a	categorical	variable,	as	shown	in	this	screenshot:	

	

In	the	previous	screenshot,	we	created	RIN_Age_10	using	rescale	and
BE10_Age	using	binning.

Binning	could	also	be	used	to	reduce	small	observation	errors.	By	replacing	the
original	value	by	a	representative	value	of	the	group,	you	will	reduce	the	effect
of	small	observation	errors.



Indicator	variables
As	opposed	to	the	previous	section	some	algorithms	(like	many	clustering
models)	only	work	with	numeric	variables.	A	simple	technique	to	convert
categorical	variables	into	numeric	variables	is	indicator	variables.	Take	a
categorical	variable	like	Level	with	three	categories—Beginner,	Medium,	and
Advanced—and	create	three	new	variables	called	Beginner	indicator,	Medium
indicator,	and	Advanced	indicator.	If	the	value	of	Level	is	Beginner,	set
variable	Beginner	indicator	to	1	and	the	rest	to	0,	as	shown	in	this	diagram:	

	

In	Rattle,	the	Transform	tab	has	an	Indicator	Variable	option.	In	order	to	apply
this	transformation,	select	the	variable	(in	this	case,	Level),	select	Indicator
Variable,	and	click	on	Execute,	as	shown	in	the	following	screenshot.	Rattle
will	create	a	variable	for	each	category	belonging	to	the	categorical	variable:	



	
Join	Categories

With	the	Join	Categories	option,	Rattle	will	convert	two	categorical	variables
into	a	single	one.	In	the	following	table,	we've	used	Rattle	to	convert	Level	and

Sex	to	a	single	variable:	

	
As	Category

Using	the	As	Category	option,	you	can	convert	numeric	variables	into
categorical.



As	Numeric

Using	the	As	Numeric	option,	Rattle	will	convert	categorical	variable	into
numeric.



Cleaning	up
The	Cleanup	option	in	the	Transform	tab	allows	you	to	delete	columns	and
observations	from	your	dataset,	as	shown	in	this	screenshot:	

	

The	following	are	the	different	available	cleanup	options:

Delete	Ignored:	This	will	delete	variables	marked	as	ignore
Delete	Selected:	This	will	delete	the	selected	variables
Delete	Missing:	This	will	delete	all	variables	with	any	missing	values
Delete	Obs	with	Missing:	This	will	delete	observations	with	missing
values	in	the	selected	variable

You've	learned	how	to	transform	variables.	When	Rattle	transforms	a	variable,	it
doesn't	modify	the	original	one.	It	creates	a	new	variable	with	the	corresponding
modification.	If	you	apply	a	transformation	to	the	variable	Age,	you	will	have
the	variable	Age	and	the	new	one.	Your	algorithms	only	need	one	variable,	the
original	or	the	transformed,	so	you	have	to	change	the	role	of	the	one	not	to	be
used	to	Ignore.	By	default,	after	the	transformation,	Rattle	sets	the	original
variable	to	Ignore.	In	the	following	screenshot,	you	can	see	the	original	variable
Age	set	to	Ignore	and	the	new	transformed	variable	set	to	Input:	



	



Exporting	data
After	data	transformation,	you	have	to	export	your	new	dataset,	as	shown	in	this
screenshot:

In	the	main	menu,	press	the	Export	icon;	this	will	open	a	dialog	window.
Choose	a	directory	and	a	filename	and	press	Save.	This	book	is	the	reference	for
Rattle.



Further	learning
An	extended	explanation	of	data	transformation	in	Rattle	can	be	found	in	Data
Mining	with	Rattle	and	R,	by	Graham	Williams,	Springer.	Graham	Williams	is	a
well-known	data	scientist;	he	created	and	developed	Rattle.



Summary
We	started	this	chapter	comparing	the	term	mise	en	place	used	by	professional
chefs	to	the	task	of	loading	and	preparing	the	data	before	we	start	creating
predictive	models.

During	this	chapter,	we	introduced	the	basic	vocabulary	to	describe	datasets,
observations,	and	variables.	We	also	saw	how	to	load	a	CVS	file	into	Rattle	and
described	the	most	usual	data	transformations.

This	chapter,	as	well	as	Chapter	3,	Exploring	and	Understanding	Your	Data,
covered	the	mise	en	place	for	our	data.	After	going	through	these	chapters,	we'll
be	able	to	prepare	our	data	to	analyze	it	and	discover	hidden	insights.

In	the	next	chapter,	we'll	explore	the	dataset	to	have	a	better	understanding	and
to	find	data	quality	problems.	The	next	two	chapters	are	tied	because	exploring
the	dataset	and	transforming	it	are	complementary	tasks.

When	you	are	cooking,	the	quality	of	the	ingredients	has	a	great	influence	on	the
quality	of	your	dish.	Working	with	data	is	very	similar;	it's	very	hard	to	achieve
good	results	if	you	use	low	quality	data.	For	this	reason,	these	two	chapters	are
really	important.



Chapter	3.	Exploring	and
Understanding	Your	Data
In	the	previous	chapter,	we've	explained	how	to	load	data	and	how	to	transform
it	using	Rattle.	In	this	chapter,	we're	going	to	learn	how	use	Rattle	to:

Summarize	dataset	characteristics
Identify	missing	values	in	the	data
Create	charts	to	represent	data	point	distributions

We	have	two	main	objectives	when	we	explore	data.	We	would	like	to
understand	the	problem	we	want	to	solve	and	we	want	to	understand	the
structure	of	the	dataset	in	order	to	choose	the	most	appropriate	predictive
technique.

If	you	are	a	business	analyst,	Qlik	Sense	is	a	great	tool	to	explore	and	understand
your	data.	With	Qlik	Sense,	you	can	find	relationships	between	customers,
products,	and	sales	people	in	a	very	intuitive	way.	In	the	next	chapter,	we're
going	to	learn	how	to	use	Qlik	Sense	to	load	and	explore	data.

As	some	predictive	techniques	are	based	on	statistics,	if	you	are	preparing	a
dataset	to	apply	a	predictive	technique,	you	would	probably	prefer	a	more	formal
or	mathematical	approach.	We	call	this	approach	Exploratory	Data	Analysis
(EDA).	This	is	a	large	subject	developed	in	1997	by	John	W.	Tukey.	In	this
chapter,	we'll	see	some	EDA	methods	and	concepts	and	we'll	use	Rattle	to
explore	data.	Mainly,	we're	going	to	use	the	Test	tab	to	explore	the	data,	but
don't	forget	to	start	the	exploration	by	looking	at	the	data	in	tabular	form.



Text	summaries
The	Summary	option	in	the	Explore	tab	provides	us	with	some	descriptive
statistics	such	as	Summary,	Describe,	Basics,	Kurtosis,	and	Skewness	reports.
Descriptive	statistics	covers	methods	to	summarize	data.	The	Summary	option
also	provides	a	very	useful	Show	Missing	report:



Summary	reports
Rattle	provides	us	with	these	summary	reports:

Summary
Describe
Basics
Kurtosis
Skewness

These	reports	summarize	variable	distributions	and	help	to	give	an	initial
understanding	of	our	data.	In	order	to	understand	these	reports,	you	only	need	a
basic	understanding	of	descriptive	statistics.

Measures	of	central	tendency	–	mean,	median,	and	mode

For	a	variable,	a	measure	of	central	tendency	describes	the	center	of	the
distribution	as	follows:

Mean:	The	mean	is	the	average	and	is	the	best	central	tendency	measure	if
the	distribution	is	normal.
Median:	Half	of	the	observations	have	a	lower	value	than	this	variable	and
the	other	half	have	a	higher	value.	This	is	a	good	measure	if	there	are
extreme	values.
Mode:	The	mode	is	the	most	repeated	value.	In	a	histogram,	the	peak	is	the
mode.

Measures	of	dispersion	–	range,	quartiles,	variance,	and	standard
deviation

Measures	of	dispersion	help	us	to	summarize	how	spread	out	these	scores	are.	To
describe	dispersion,	Rattle	provides	us	with	some	statistics,	including	the	range,
quartiles,	absolute	deviation,	variance,	and	standard	deviation.	Dispersion	gives
us	an	idea	of	how	the	values	for	individual	observations	are	spread	out	around
the	measure	of	central	tendency.

Range

Range	is	the	difference	between	the	maximum	and	minimum	values.	The	range
can	be	useful	to	detect	outliers	if	you	are	measuring	variables	with	a	critical	low



or	high.

Quartiles

In	a	ranked	variable,	quartiles	explain	the	spread	of	a	dataset	by	breaking	the
dataset	into	quarters,	which	are	described	as	follows:

25	percent	of	the	observations	have	equal	or	lower	value	than	the	first
quartile,	or	Q1
25	percent	of	the	observations	have	equal	or	higher	value	than	the	third
quartile,	or	Q3
Half	of	the	observations	have	a	lower	value	than	the	median	or	the	second
quartile	(Q2),	and	the	other	half	have	a	higher	value

Finally,	we	call	the	difference	between	Q3	and	Q1	the	interquartile	range.

In	the	following	screenshot,	you	can	see	the	output	of	the	Summary	report	for	a
numeric	variable,	Age,	and	for	a	categorical	variable,	Embarked:	

	

For	a	numerical	variable	like	age,	this	report	tells	us	the	minimum	and	maximum
values	(range),	the	quartiles,	the	mean,	the	median,	and	the	number	of	missing
values.

For	a	categorical	variable	like	embarked,	this	report	gives	us	the	number	of
occurrences	of	each	category	and	the	number	of	missing	values.

Tip

You	can	find	a	more	accurate	description	of	quartile	at	this	wiki:
http://en.wikipedia.org/wiki/Quartile.

http://en.wikipedia.org/wiki/Quartile


Variance

In	a	group	of	data,	high	variance	means	that	the	data	points	are	widely	spread;
low	variance	means	that	the	values	are	concentrated	around	the	mean.	Following
is	the	formula	for	variance:	Variance	=	∑(X	-	Mean)2/(N-1)	Here,	X	is	the	value
of	each	observation	and	N	is	the	total	number	of	observations.

Standard	deviation

The	standard	deviation	is	closely	related	to	variance	and	it	also	measures	the
spread	of	values	within	a	dataset.	The	formula	is	very	simple	–	it	is	the	square
root	of	the	variance.	A	low	standard	deviation	indicates	that	the	values	are
concentrated	close	to	the	mean;	a	high	standard	deviation	indicates	that	the
values	are	more	spread	out.	The	standard	deviation	is	the	most	commonly	used
measure	of	spread	because	it	is	expressed	in	the	same	units	as	mean,	whereas
variance	is	expressed	in	square	units.

Measures	of	the	shape	of	the	distribution	–	skewness	and	kurtosis

With	kurtosis	and	skewness,	we	can	have	an	intuition	of	the	shape	of	the
distribution	of	a	variable.	Kurtosis	describes	if	a	particular	distribution	is	peaked
and	skewness	measures	the	asymmetry	of	that	distribution.	A	flatter	distribution
has	a	lower	kurtosis.

In	a	negative	skewed	distribution,	the	left	tail	is	longer	than	the	right	tail	or	the
center	of	the	data	is	moved	to	the	right.	For	a	positive	skewed	distribution,	the
longest	tail	is	the	right	one	or	the	center	of	the	distribution	is	moved	to	the	left.

Tip

As	with	quartiles,	I	suggest	you	take	a	look	at	the	wiki	for	a	more	academic
description:

http://en.wikipedia.org/wiki/Kurtosis
http://en.wikipedia.org/wiki/Skewness

In	the	following	screenshot,	you	can	see	the	Basics	report	for	the	variable	age:	

http://en.wikipedia.org/wiki/Kurtosis
http://en.wikipedia.org/wiki/Skewness


	

This	report	gives	us	the	measures	we've	seen	in	this	chapter,	such	as	maximum,
minimum,	mean,	median,	standard	deviation,	variance,	kurtosis,	and	skewness.
There	are	still	some	strange	measures	we	don't	understand.

What	are	SE	Mean,	LCL	Mean,	and	UCL	Mean?	They	mean	the	following:

SE	Mean:	This	stands	for	the	Standard	Error	of	the	mean
LCL	Mean:	This	stands	for	the	Lower	Confidence	Level	mean
UCL	Mean:	This	stands	for	the	Upper	Confidence	Level	mean

These	measures	explain	the	error	margin	of	the	mean	and	the	confidence	interval
of	the	mean.



Showing	missing	values
Missing	values	is	an	important	problem.	For	this	reason,	this	report	deserves
special	attention.	We	saw	in	the	previous	chapter	how	important	missing	values
are	and	how	we	can	fill	these	values;	now	we're	going	to	see	how	to	understand
the	impact	of	missing	values	in	our	dataset.

We're	going	to	use	the	Titanic	passenger	list	dataset.	Perform	the	following
steps:

1.	 Load	the	Titanic	dataset	into	Rattle.
2.	 Go	to	the	Explore	tab.
3.	 Choose	the	Summary	option.
4.	 Select	the	Show	Missing	values	report.
5.	 Press	the	Execute	button.

The	preceding	steps	have	been	illustrated	in	the	following	screenshot:	

	

We've	obtained	a	Missing	Value	Summary	report	as	shown	in	the	following
screenshot.	We're	going	to	look	at	the	report	in	more	detail:	



	

As	you	can	see	in	the	highlighted	part	of	the	preceding	screenshot,	this	report
has	a	central	area	with	a	column	for	each	variable.	In	this	central	area,	each	row
corresponds	to	a	pattern	of	observations,	–	1	means	that	the	value	is	present	and
0	means	the	values	is	missing.

Now	take	a	closer	look	at	the	first	row.	Below	each	variable,	there	is	a	1;	this
means	that	in	this	kind	of	observation,	all	variables	have	a	value.	What	about	the
second	row?	The	second	row	represents	the	observation	that	all	variables	have
values	except	the	variable	Age.

On	the	left-hand	side	of	the	central	area,	there	is	a	column.	Each	row	in	this
column	has	a	number	representing	the	number	of	repetitions	of	the	pattern.
Looking	at	the	first	and	second	rows,	there	are	183	observations	with	no	missing
values	and	19	observations	with	a	missing	value	for	the	variable	Age.

On	the	right-hand	side	of	the	central	area,	there	is	another	column.	Each	row	in
this	column	has	a	number	that	tells	how	many	missing	variables	there	are	in	that
pattern.	Looking	again	at	the	first	and	second	rows,	they	have	0	and	1	missing
variables	respectively.

Finally,	under	the	central	area,	there	is	a	row.	In	this	row,	each	value	is	the
number	of	total	missing	values	that	the	variable	has.	In	this	example,	Embarked
has	2	missing	values	and	Age	has	177	missing	values.

Tip



Remember	that	some	datasets	have	dummy	values	for	missing	values.	If	you
have	a	variable	called	price	and	you	have	observations	with	the	value	0	for	this
variable,	they	are	probably	missing	values.	The	Missing	Value	Summary	report
will	not	show	these	hidden	missing	values.



Visualizing	distributions
In	the	last	section,	we	discussed	distributions	and	we	saw	some	measures	that
describe	them.	In	this	section,	we're	going	to	see	how	to	visualize	distributions.
Visualizations	are	more	intuitive	than	numeric	measures	and	they	will	help	us	to
understand	our	data.

Rattle	offers	two	different	set	of	charts	depending	on	the	nature	of	the	variables.
For	numeric	variables,	we	can	use	Box	Plot,	Histogram,	Cumulative,	and
Benford.	And	for	categorical	variables,	Rattle	provides	us	with	Bar	Plot,	Dot
Plot,	and	Mosaic	charts.	We're	going	to	explore	the	most	common	visual
representations.

Before	using	Rattle	to	plot	charts,	make	sure	that	the	Advanced	Graphics
option	is	unchecked.	With	this	option	checked,	some	charts	like	histograms	will
not	be	plotted.	This	is	shown	in	the	following	screenshot:	

	



Numeric	variables
We're	going	to	use	the	variable	Age	of	the	Titanic	passenger	list	to	show	the
different	types	of	charts	with	numeric	variables.	Load	the	data	set,	set	the
variable	Survived	as	target,	and	go	to	the	Explore	tab	and	select	the
Distributions	type.	The	central	area	of	the	screen	is	divided	into	two	panels	–
the	upper	panel	is	reserved	for	the	numeric	variables	and	the	lower	one	for
categorical	variables.

In	the	numeric	variables	area,	you	can	see	six	variables	(Survived,	Pclass,	Age,
SibSp,	Parch,	and	Fare)	and	four	different	plots	(Box	Plot,	Histogram,
Cumulative,	and	Benford).	To	plot	a	chart,	you	have	to	select	the	appropriate
checkbox	and	click	on	the	Execute	button,	as	shown	in	the	following	screenshot:



	
Box	plots

The	first	chart	we're	going	to	discuss	will	be	the	Box	Plot.	We're	going	to	plot	a
chart	of	the	variable	Age	of	the	Titanic's	passenger	list.	Select	the	Annotate
checkbox	in	order	to	have	the	values	of	the	data	points	labeled	as	shown	in	the
following	screenshot:	

	

These	plots	summarize	the	distribution	of	a	variable	in	a	dataset.	In	the	following
screenshot,	we	can	see	the	representation	of	the	variable	Age:	



	

If	you	have	identified	the	target	variable	when	you	loaded	the	dataset,	Rattle	will
create	a	plot	for	all	observations	and	a	plot	for	every	possible	value	of	the	target
variable.	In	this	example,	the	target	variable	Survived	has	two	possible	values,	–
0	and	1.

We	have	highlighted	some	points	of	the	central	plot	–	the	green	part.	In	the
center	of	the	plot,	the	horizontal	line	labeled	with	a	28	is	the	median.	The	point
labeled	with	a	21	is	the	first	quartile,	or	Q1,	and	39	represents	the	third	quartile,
or	Q3.	In	this	plot,	the	interquartile	range	is	39	-	21	=	18	(Q3	–	Q1).	The	lower
and	upper	points	labeled	with	1	and	66	are	1.5	times	the	interquartile	range	from



the	median.	Points	above	the	point	labeled	with	a	66	are	outliers.

Histograms

Histograms	give	us	a	quick	view	of	the	spread	of	a	distribution.	Rattle's
histogram	combines	three	charts	in	one,	namely	the	R	histogram	(the	bars),	the
density	plot	(the	line),	and	the	rug	plot.	The	rug	plot	is	marked	with	a	red	arrow
in	this	screenshot:	

	

This	histogram	shows	us	the	distribution	in	terms	of	age.	The	vertical	bars	are
the	original	histogram.	Every	bar	represents	an	Age	range	and	the	height	of	the



bar	represents	the	Frequency	or	the	number	of	observations	that	fall	in	that	age
range.	The	density	plot	is	a	more	accurate	representation	of	the	estimated	values.
Finally,	in	the	rug	plot,	every	line	shows	the	exact	value	of	an	observation,	as
shown	in	the	following	screenshot:	

	

In	the	preceding	histogram,	we	can	see	that	most	people	on	the	Titanic	were
between	20	and	40	years	of	age.

Cumulative	plots

The	cumulative	plot	represents	the	percentage	of	the	population	that	has	a	value
than	or	equal	to	the	value	shown	in	the	x	axis.	I've	plotted	the	cumulative	plot	for
the	variable	Age.	If	you	look	at	the	following	screenshot,	you	can	see	that	nearly
80	percent	of	the	passengers	were	less	than	or	equal	to	40	years	old.

We've	circled	the	younger	passengers.	In	this	plot,	like	in	the	histogram	we
plotted	before,	we	see	that	young	people	had	a	greater	probability	of	survival.



	



Categorical	variables
We're	now	going	to	explore	categorical	variables.	As	with	numeric	variables,
you	have	to	load	the	Titanic	dataset	and	set	Survived	as	the	target	variable.	Then
go	to	the	Explore	tab	and	select	the	Distributions	type.

To	plot	a	new	graph,	you	have	to	check	the	plot	and	the	variable	in	the
Categoric	variable	panel	and	click	on	Execute.	This	is	illustrated	in	the
following	screenshot:	

	

We'll	use	the	variable	embarked	from	the	Titanic	passenger	list	to	plot	a	bar
plot,	a	dot	plot,	and	a	mosaic	plot.

Bar	plots



The	bar	chart	is	probably	the	simplest	and	easiest	to	understand	–	it	uses	vertical
or	horizontal	bars	to	compare	among	categories.	In	the	following	screenshot,	we
can	see	a	bar	chart	of	the	variable	embarked:	

	

In	the	previous	chapter,	we	introduced	this	dataset	and	we	explained	that	the
variable	embarked	has	three	possible	values	–	C	for	Cherbourg,	Q	for
Queenstown,	and	S	for	Southampton.	If	you	look	at	this	chart,	it	is	quick	and
easy	to	see	that	most	of	the	people	(644)	embarked	in	Southampton.	Looking	at
the	blue	and	green	bars,	we	can	see	that	around	a	third	of	the	passengers	that
embarked	at	Southampton	survived	and	around	half	of	the	passengers	who



embarked	at	Cherbourg	survived.

Tip

Try	to	create	a	bar	chart	of	the	variable	sex	and	you'll	discover	that	74.2	percent
of	females	survived	and	only	18.9	percent	of	the	males	survived	the	Titanic
disaster.

Mosaic	plots

The	mosaic	plot	shows	the	distribution	of	the	values	for	a	variable.	Look	at	the
following	screenshot.	At	the	top	of	the	plot,	there	are	three	letters—S,	C,	and	Q
—representing	the	three	harbors.	Below	each	letter,	there	is	a	bar	divided	into
two	sub-bars	(blue	and	green).	We	have	highlighted	the	bar	below	Q,	as	shown
in	the	following	screenshot:	



	

The	width	of	this	bar	represents	the	number	of	occurrences.	In	our	plot,	the
wider	bar	is	the	bar	below	S.	This	is	the	harbor	where	most	of	the	people
embarked.	For	each	harbor,	we	have	a	green	and	a	blue	bar.	The	size	of	the	green
bar	represents	the	number	of	people	who	didn't	survive	and	the	blue	bar
represents	the	number	of	people	who	survived.

As	you	can	see,	the	mosaic	plot	gives	us	a	fast	understanding	about	how	our	data
is	distributed.



Correlations	among	input	variables
An	important	step	is	to	identify	relationships	among	input	variables.	To	measure
this	relationship,	we	use	the	correlation	coefficient.	Correlation	coefficient	is	a
number	between	+1	and	-1.	When	two	variables	have	a	correlation	coefficient
close	to	+1,	they	have	a	strong	positive	correlation.	A	coefficient	of	exactly	+1
indicates	a	perfect	positive	fit.	A	positive	correlation	between	two	variables
means	that	both	variables	increase	and	decrease	their	values	simultaneously.	A
correlation	coefficient	between	two	variables	close	to	-1	shows	that	both
variables	have	strong	negative	correlation.	When	two	variables	have	a	negative
correlation,	the	value	of	one	of	the	variables	increases	when	the	value	of	the
other	variable	decreases.	A	correlation	coefficient	close	to	0	or	a	weak
correlation	between	two	variables	means	that	there	is	no	linear	relationship
between	those	variables.

Coming	back	to	the	Titanic	passenger	list,	I've	selected	the	Explore	tab,	the
Correlation	sub-option,	and	I've	clicked	on	the	Execute	button,	as	shown	in	this
screenshot:	

	



Of	course,	each	variable	has	a	correlation	coefficient	with	itself	of	1.0.	Now	look
at	the	variable	Pclass	(passenger	class).	This	variable	has	three	possible	values:
1	(first	class),	2	(second	class),	and	3	(third	class).	This	is	a	categorical	variable
because	there	are	three	possible	groups	or	categories.	These	categories	are
ranked	and	we're	going	to	use	a	numeric	variable	for	that.	In	this	way,	Rattle	can
compute	the	correlation	between	Pclass	and	other	numeric	variables.	Look	at	the
correlation	coefficient	between	Fare	and	Pclass;	it	is	-0.573.	Is	there	any
relationship	between	Fare	and	Pclass?	A	correlation	coefficient	close	to-0.6
indicates	that	there	is	some	correlation	between	the	two	variables.	What	does
this	correlation	between	Fare	and	Pclass	mean	in	real	life,	though?	Usually,	first
class	tickets	are	the	most	expensive,	second	class	tickets	are	cheaper,	and	the
third	class	tickets	are	the	cheapest.	Still,	why	is	the	relationship	between	Pclass
and	Fare	negative?	It	is	because	a	higher	value	of	Fare	(higher	price)	indicates	a
lower	number	of	the	variable	Pclass	(higher	class).

The	following	chart	is	a	visual	representation	of	the	correlation	coefficients.	By
looking	at	the	graph,	you	will	see	that	the	correlations	coefficients	are	the	same
as	in	the	previous	report.	Note	that	you	need	to	enable	the	Advanced	Graphics
option	inside	the	Settings	menu	for	this:	



	



The	Explore	Missing	and	Hierarchical
options
The	Explore	Missing	option	will	help	you	to	detect	relationships	between
missing	values	in	your	dataset,	as	shown	in	the	following	screenshot:	

	

When	two	variables	have	a	strong	correlation	in	missing	values,	it	means	that
when	the	value	of	a	variable	is	not	present,	the	second	variable	also	tends	to	have
a	missing	value.

The	Hierarchical	option	uses	a	tree	diagram	graphical	to	represent	the
correlation	between	variables.



Further	learning
In	this	chapter,	we've	introduced	some	EDA	measures.	If	you	want	a	more
extensive	EDA	introduction,	I	recommend	the	Exploratory	Data	Analysis	course
on	Coursera	–	www.coursera.org/course/exdata.

If	you	prefer	going	to	the	source,	Exploratory	Data	Analysis	Paperback,	by	John
W.	Tukey,	is	for	you.

Wikipedia	offers	some	useful	insights	into	these	EDA	statistics	concepts.

http://www.coursera.org/course/exdata


Summary
This	chapter	was	divided	into	three	main	sections	depending	on	how	we	are
looking	at	data	–	tables,	text	summaries,	and	charts.

When	we	saw	text	summaries,	we	introduced	Summary,	Describe,	Basics,
Kurtosis,	and	Skewness	reports.	To	understand	these	reports,	we	needed	to
remember	some	basic	statistics	concepts	like	mean,	median,	mode,	range,
quartile,	interquartile	range,	variance,	and	standard	deviation.

In	this	chapter,	we	also	introduced	some	important	charts	–	histograms,
correlations,	Box	Plot,	and	Bar	Chart.

In	the	next	chapter,	we'll	learn	how	to	load	data	into	Qlik	Sense	and	how	to
create	data	visualizations.	We'll	use	some	of	the	charts	we	introduced	in	this
chapter.	You'll	see	that	Qlik	Sense	is	more	powerful	for	a	business	user	who
wants	to	understand	his	data	and	create	a	graphical	representation	of	his	data.
Rattle	and	R	are	tools	closer	to	statistics	and	some	functionalities,	like	the
correlations	analysis,	are	very	powerful;	for	this	reason,	we've	introduced	EDA
using	Rattle.	After	the	next	chapter,	you'll	be	able	to	choose	the	tool	that	you	feel
more	comfortable	with	for	each	task.

We'll	continuing	exploring	data	in	the	next	chapter.	After	the	next	chapter,	we'll
start	creating	predictions	with	our	data.



Chapter	4.	Creating	Your	First	Qlik
Sense	Application
In	the	previous	chapters,	we've	seen	how	to	use	Rattle	to	modify	and	explore	our
data.	The	exploration	we've	done	is	mainly	a	mathematical	exploration.	Qlik
Sense	is	the	perfect	tool	to	explore	and	understand	the	data	from	a	business	point
of	view.	Qlik	Sense	is	easy	and	intuitive.	In	this	chapter,	we'll	create	a	simple
application	in	order	to	explore	the	basics	of	Qlik	Sense.

To	create	a	simple	application,	we'll	follow	these	steps:

Download	an	example	dataset
Learn	how	to	load	it	into	Qlik	Sense
Learn	about	the	Qlik	Sense	data	model	and	its	application	structure
Learn	how	to	create	basic	charts	such	as	bar	and	pie	charts
To	finish	our	application,	we'll	create	some	filters	that	will	help	us	to	select
the	desired	information
Finally,	we'll	learn	to	explore	our	dataset	using	Qlik	Sense;	at	this	point,
we'll	start	answering	basic	business	questions



Customer	segmentation	and	customer
buying	behavior
Segmenting	the	customers	means	dividing	our	customers	into	groups	relevant	to
our	business.	Customers	are	divided	based	on	demography,	behavior,	and	other
indicators.	Analyzing	your	customers	and	dividing	them	into	different	groups
allows	you	to	be	more	accurate	in	your	marketing	activities.

There	are	different	types	of	customer	segmentation;	some	of	them	are:

Geographic	segmentation
Demographic	segmentation
Buying	behavior	segmentation
Psychographic	segmentation
Segmentation	by	benefits
Cultural	segmentation

In	this	chapter,	we'll	develop	an	application	that	allows	us	to	visually	create
customer	segments	based	on	different	variables.	In	the	next	chapter,	we'll	create
a	system	that	will	automatically	segment	our	customers	based	on	their	shopping
habits	in	the	main	product	categories.	The	main	objective	of	this	application	is
improving	our	knowledge	of	our	customers	to	address	more	effective	marketing
activities.



Loading	data	and	creating	a	data
model
In	order	to	create	an	example	application,	I've	downloaded	a	dataset	from	the
Center	for	Machine	Learning	and	Intelligent	Systems	at	the	University	of
California,	Irvine.	They	have	a	dataset	repository	you	can	use	for	training
purposes.	The	datasets	are	organized	by	task	(clustering,	classification,
regression,	and	others),	by	attribute	type,	by	domain	area,	and	so	on.	This	is	a
very	useful	resource	to	practice	your	new	skills	and	we'll	be	using	it	again	in	this
book.

Note

You	can	find	more	information	from	Bache,	K.	and	Lichman,	M.	(2013);	UCI
Machine	Learning	Repository	[http://archive.ics.uci.edu/ml];	Irvine,	CA:
University	of	California,	School	of	Information	and	Computer	Science.

In	this	chapter,	we're	going	to	use	a	dataset	called	Wholesale	customers	Data
Set.	The	dataset	is	originated	from	a	larger	database	–	Abreu,	N.	(2011);	Analise
do	perfil	do	cliente	Recheio	e	desenvolvimento	de	um	sistema	promocional;
Mestrado	em	Marketing,	ISCTE-IUL,	Lisbon.	You	can	find	the	dataset	on	this
page:	https://archive.ics.uci.edu/ml/datasets/Wholesale+customers#

The	dataset	contains	440	customers	(observations)	of	a	wholesale	distributor.	It
includes	the	annual	spending	in	monetary	units	on	diverse	product	categories.
The	columns	are	explained	as	follows:

Fresh:	annual	spending	(per	1,000)	on	fresh	products
Milk:	annual	spending	(per	1,000)	on	milk	products
Grocery:	annual	spending	(per	1,000)	on	grocery	products
Frozen:	annual	spending	(per	1,000)	on	frozen	products
Detergents_Paper:	annual	spending	per	1,000)	on	detergents	and	paper
Delicatessen:	annual	spending	(per	1,000)	on	delicatessen	products
Channel:	Horeca	(value	=	1)	or	Retail	(value	=	2)
Note

In	the	food	industry,	Horeca	stands	for	Hotel,	Restaurant,	or	Café,	so	a

http://archive.ics.uci.edu/ml
https://archive.ics.uci.edu/ml/datasets/Wholesale+customers


business	that	prepares	and	serves	food.

Region:	Lisbon	(value	=	1),	Porto	(value	=	2),	or	Other	(value	=	3)

In	the	following	screenshot,	you	can	see	what	the	data	looks	like:	

	

An	important	difference	between	Rattle,	or	R,	and	Qlik	Sense	is	that	in	Rattle,
generally,	our	dataset	is	a	simple	table.	Using	Qlik	Sense,	we	can	easily	work
with	more	complex	data	models.	Working	with	more	complex	data	models
allows	us	to	discover	hidden	relationships.	In	this	example,	we	have	a	table	with
customer	data;	if	we're	able	to	link	the	customer	information	with	a	salesperson
or	shipping	information,	our	analysis	would	be	richer.

In	Qlik	Sense	Desktop,	we	have	two	ways	to	load	data:

We	can	use	the	Data	load	editor	option
We	can	use	the	Quick	data	load	option

With	the	Quick	data	load	option,	you	can	load	data	by	just	dragging	and
dropping	data	files,	but	if	you	want	to	transform	data	into	Qlik,	you	need	to	do	it
using	the	Data	load	editor	option.	We'll	create	our	data	model	using	only	the
Quick	data	load	option,	but	we'll	also	see	how	we	can	do	the	same	work	using
the	Data	load	editor	option.



Preparing	the	data
We're	going	to	create	a	very	simple	data	model.

Our	data	model	has	three	tables.	The	main	table,	Customers,	is	the	dataset	we've
downloaded.	We	also	have	two	additional	tables,	Channel	and	Region.	We're
going	to	use	the	tables	to	convert	from	codes	to	descriptions;	the	value	1	in	the
field	Region	means	Lisbon.

The	original	dataset	contains	six	product	categories	–	Fresh,	Frozen,	Milk,
Grocery,	Delicatessen,	and	Detergents_Paper.	The	six	product	categories	can
be	grouped	into	two	main	categories	–	Food	(Fresh,	Milk,	Grocery,	Frozen,
and	Delicatessen)	and	Detergents_Paper.	We'll	create	two	new	columns	in	the
dataset	called	Food	and	Total_Spent.	The	new	variable	Food	will	contain	the
sum	of	Fresh,	Milk,	Grocery,	Frozen,	and	Delicatessen.	The	new	variable
Total_Spent	will	contain	the	total	annual	expenditure	for	each	customer.	We	can
create	the	new	fields	in	two	ways.	We	can	use	a	spreadsheet	tool	to	create	these
new	columns	and	set	it	as	a	CSV	file	to	save	the	resulting	data.	We	can	also	use
the	Data	load	editor	to	do	it.	In	this	example,	we'll	use	the	Data	load	editor	to
create	these	two	variables	and	a	third	variable	called	Customer_ID.	The
variable	Customer_ID	will	be	a	unique	identifier	for	each	customer.

In	the	original	dataset,	we	need	six	values	to	represent	the	annual	expenditure	of
a	customer.	It's	hard	to	represent	six	variables	in	a	two-dimensional	chart.	In	the
modified	dataset,	we	can	use	two	values—Food	and	Detergents_Paper—to
summarize	the	six	original	values.	In	this	way,	we	can	graphically	represent	the
annual	expenditure	of	a	customer	by	a	point	in	a	plane.	This	is	a	trick	to	see	your
customers	in	an	easy	way.

You	can	see	our	data	model	in	the	following	diagram:	



	

In	the	preceding	diagram,	we	can	see	that	the	three	tables	are	associated.	To
associate	two	tables,	Qlik	Sense	only	needs	to	find	two	fields	with	the	same
name.	If	Qlik	Sense	finds	a	field	called	Channel	in	the	Customers	table	and	a
field	with	the	same	name	in	the	Channel	table,	its	associative	engine	assumes
that	the	two	fields	mean	the	same	and	associates	the	tables.

Create	two	CSV	or	Excel	files	containing	the	following	two	smaller	tables.
These	tables	will	have	the	common	columns	Channel	and	Region	when
compared	with	the	main	Customers	table:	

	

Open	Qlik	Sense	Desktop	and	in	the	pop-up	window,	select	Create	new	app,
name	it,	and	open	the	new	application.



A	Qlik	Sense	application	has	a	main	menu.	We'll	use	this	menu	to	move	between
the	App	overview,	Data	load	editor,	Data	model	viewer,	and	Open	hub

options,	as	shown	here:	

	

Drag	the	customers	file	you	have	modified	and	drop	it	over	your	new
application.	A	window	showing	the	data	you	are	going	to	load	will	appear;
simply	click	on	the	Load	data	button.	After	these	instructions	are	followed,	you
will	see	a	screen	similar	to	this:	

	



A	pop-up	window	will	inform	you	that	the	data	has	been	loaded.	Close	the
window	and	load	the	Channel	and	Region	files	(the	two	smaller	CSV	files	that
we	created	earlier).	Every	time	you	try	to	add	a	new	data	file,	Qlik	Sense	will
ask	you	if	you	want	to	replace	or	add	data;	choose	Add	data	as	shown	in	the

following	screenshot:	

	

Now	we	can	review	our	work.	Open	the	Data	model	viewer	option.	Qlik	Sense
opens	the	data	model	we've	just	built.

Check	the	data	model	we've	just	created.	Close	to	the	fields	Channel	and	Region,
there	is	an	icon	representing	a	key.	I've	circled	the	icon	to	make	it	easier	to
identify.	This	icon	means	that	Qlik	uses	this	field	to	associate	a	table	with
another	one,	as	shown	in	the	following	screenshot:	



	

To	load	this	data	we've	used	the	Quick	data	load	functionality.	This	functionality
is	only	present	in	Qlik	Sense	Desktop,	and	is	not	present	in	the	server	version	of
the	product.	Qlik	Sense,	as	a	platform	not	as	a	personal	tool,	focus	on	data
governance.	For	an	analytic	tool	data	governance	are	mechanisms	to	ensure	the
data	loaded	in	the	system	meets	the	organization's	standards.	For	this	reason	this
functionality	is	not	present	in	in	Qlik	Sense.

Qlik	Sense	Desktop	Quick	data	load	functionality	has	done	a	lot	of	work	for	us.
In	order	to	understand	what	happened,	we'll	review	the	Data	load	editor	and
we'll	use	it	to	create	the	three	new	variables.

Look	at	the	left-hand	side	vertical	bar;	Qlik	Sense	has	created	a	sheet	for	every
file	that	we've	loaded.	Look	at	this	sheet	and	you	will	find	a	LOAD	sentence	like
the	one	shown	in	the	following	screenshot:	



	

This	LOAD	sentence	is	very	useful;	if	you	want,	you	can	modify	data	here	before
loading	it.	As	we've	said	before,	we	want	to	add	three	new	columns	to	this	table
–	Customer_ID,	Food,	and	Total_Spent.	We	can	do	this	simply	by	adding	the
columns	to	the	spreadsheet	or	by	using	the	Qlik	Data	load	editor	option.	In	this
example,	we're	going	to	use	the	Data	load	editor	option.

Change	the	code	as	shown	in	the	following	screenshot	and	click	on	the	Load
data	button.	Qlik	Sense	will	reload	all	data	files.	With	this	code,	you've
calculated	the	new	field	in	Qlik	Sense	instead	of	doing	it	in	the	CSV	file	or	the
Excel	spreadsheet:	

	

The	first	line	adds	a	number	and	labels	it	as	Customer_ID.	The	function	RowNo()
returns	the	number	of	the	row.	In	this	dataset,	each	row	is	a	different	customer,
so	with	this	line	of	code,	we'll	add	an	identifier	to	each	customer.	The	last	two
lines	add	the	new	variables	Food	and	Total_Spent.



Open	the	Data	model	viewer	option	again;	now	you	can	see	the	three	fields	that
we've	just	created.	This	is	shown	in	the	following	screenshot:	

	

As	you've	seen,	you	can	create	the	same	data	model	using	your	favorite
spreadsheet	tool	and	load	it	to	Qlik	Sense	or	use	the	Data	load	editor	option.
The	Data	load	editor	option	is	a	powerful	Qlik	Sense	feature.	Like	in	other	self-
service	visualization	tools,	Qlik	Sense	has	the	option	to	load	data	without	writing
a	line	of	code,	but	you	also	have	a	powerful	data	loading	and	transformation
tool.	Personally,	I	prefer	the	Data	load	editor	option	because	it	provides	me
with	precise	control	over	my	data.



Creating	a	simple	data	app
As	we've	seen	in	Chapter	1,	Getting	Ready	with	Predictive	Analytics,	a	Qlik
Sense	application	is	based	on	different	sheets.	In	this	section,	we'll	learn	how	to
add	a	new	sheet	in	your	application	and	how	to	add	basic	charts	and	filters.

In	the	Qlik	Sense	main	menu,	choose	App	overview	to	open	your	application.	A
new	Qlik	Sense	application	always	has	an	empty	sheet	called	My	new	sheet,	and
you	always	have	the	option	of	adding	a	new	one.	This	option	is	shown	in	the
following	screenshot:	

	

Now	you	are	on	an	empty	sheet.	In	order	to	modify	a	Qlik	Sense	sheet,	you	need
to	turn	the	Edit	mode	on.	You	can	do	this	by	clicking	on	the	Edit	mode	to	add
new	visual	components,	as	shown	in	this	screenshot:	

	



Associative	logic
Before	learning	how	to	create	charts,	we'll	learn	how	associative	logic	works.
Associative	logic	is	a	key	functionality	in	Qlik	Sense	–	it	allows	a	business	user
without	technical	knowledge	to	explore	the	data.

In	the	following	screenshot,	we'll	see	the	Qlik	Sense	main	screen	in	the	Edit
mode.	The	screen	is	divided	into	three	areas.	In	the	center	pane,	you	can	see	the
sheet	you're	developing;	the	current	screenshot	shows	an	empty	sheet.	The	right-
hand	pane	shows	the	properties	of	the	active	object.	In	this	case,	the	right-hand
pane	shows	the	sheet	properties	–	Title,	Description,	and	Thumbnail.	The	left-
hand	pane	has	a	tab	row	with	three	options	–	Charts,	Fields,	and	Master	items;
in	this	chapter,	we'll	use	Charts	and	Fields,	as	shown	here:	

	



From	the	left-hand	side	tab	row,	select	Fields;	you'll	see	all	fields	in	alphabetical
order.	Drag	the	Channel_Desc	field	and	drop	it	into	the	central	area,	as	shown	in
the	following	screenshot:	

	

This	action	will	add	a	filter	pane	to	your	new	sheet.	The	filter	pane	has	four
arrows	–	up,	down,	right,	and	left.	Use	these	arrows	to	move	and	resize	the	filter
pane.	You	will	be	able	to	move	and	resize	all	visual	objects	in	Qlik	Sense,	as

shown	here:	

	

After	placing	Channel_Desc,	add	two	fields	as	pane	filters	in	your	sheet	–
Region_Desc	and	Customer_ID.	Finally,	click	on	the	Done	button	to	exit	the
edit	mode,	as	shown	in	the	following	screenshot:	



	

You've	learned	in	Chapter	1,	Getting	Ready	with	Predictive	Analysis,	how	to	use
a	filter	in	Qlik	Sense.	The	following	screenshot	illustrates	that	the	two	filters	that
have	been	selected,	turned	green	in	color.	Use	these	two	filters	to	answer	the
question:	which	retail	customers	do	I	have	in	Porto?

	

You've	selected	Retail	and	Porto	in	the	Channel_Desc	and	Region_Desc	filters.
In	the	Customer_ID	pane,	you	can	see	some	customers	with	a	white
background	and	some	customers	with	a	dark	grey	background.	The	customers
with	the	white	background	are	customers	associated	to	Retail	and	Porto,	so
these	customers	are	Retail	customers	from	Porto.	The	dark	grey	customers	are
not	related	to	Porto	and	Retail,	so	they	are	not	Retail	customers	from	Porto.



Using	filters,	a	business	user	with	no	technical	knowledge	can	ask	everything
about	his	dataset.



Creating	charts
Before	starting	to	create	chart	diagrams,	delete	the	filters	we've	created	in	the
previous	section	or	create	a	new	sheet.

To	create	a	Qlik	Sense	visualization,	you	need	to	know	three	important	things:

The	type	of	chart	you	are	going	to	use
The	dimension	objects	you	are	going	to	use	in	your	analysis
The	metric	or	metrics

We're	going	to	start	with	a	very	basic	chart.	Our	objective	is	to	create	a	pie
chart	like	the	chart	in	the	following	screenshot.	This	chart	explains	the
distribution	of	our	customers	between	two	channels	–	Horeca	and	Retail:	

	

In	this	pie	chart,	the	dimension	is	Channel	and	the	measure	is	the	number	of
customers.	On	the	left-hand	side	of	the	following	screenshot,	there	is	a	bar	with
all	of	the	different	charts	that	Qlik	Sense	provides.	Drag	a	pie	chart	and	drop	it



into	the	central	area	as	shown	in	the	following	screenshot.	Change	the	size	of	the
chart	with	the	orange	lines	and	place	it	wherever	you	prefer:	

	

In	order	to	finish	the	pie	chart,	you	need	to	choose	a	dimension	and	a	measure,
and	change	the	title	to	an	appropriate	one.	In	order	to	add	Channel	as	the
dimension,	click	on	Add	measure	and	select	Channel_Desc.	Finally,	add
Count([Customer_ID])	as	the	measure.	This	is	shown	in	the	following
screenshot:	



	

Close	the	edit	mode	by	clicking	on	Done:	

	

You've	finished	your	first	pie	chart	and	it	tells	you	that	67.7	percent	of	your
customers	belong	to	Horeca	and	only	32.3	percent	belong	to	Retail.

Now	I	would	like	to	understand	which	customers	spend	more	money.	I	will
create	a	bar	chart	using	Channel_Desc	as	the	dimension	and	the	average	money
spent	as	the	measure.	Drag-and-drop	a	bar	chart	into	the	central	area,	change	its
title,	and	select	Channel_Desc	as	the	dimension	and	avg([Total_Spent])	as	the
measure.	Your	bar	chart	might	look	similar	to	the	following	screenshot:	



	

You've	created	a	chart	that	tells	you	that,	on	average,	Retail	customers	spend
more	money	than	Horeca	customers.	I	would	like	to	improve	this	bar	chart.	Turn
the	Edit	mode	on	and	click	on	Bar	chart	to	select	it.	On	the	right-hand	side,	you
have	a	bar	with	the	chart	properties.	For	a	bar	chart,	the	properties	are	organized
around	five	areas:

Dimensions
Measures
Sorting
Add-ons
Appearance

These	areas	are	shown	in	the	following	screenshot:	



	

Bar	charts	are	a	very	good	measure	to	see	the	difference	in	the	average	money
spent	by	Horeca	and	Retail	customers,	but	it's	hard	to	see	the	exact	value.	For
this	reason,	we'll	put	the	exact	value	in	the	chart.	We're	going	to	change	the
labels	for	the	dimension	and	the	measure,	from	Channel_Desc	and
Avg(Total_Spent)	to	Channel	and	Avg.	Spent,	by	following	these	steps:

1.	 Expand	the	Dimensions	menu	and	write	a	new	label	in	the	Label	text	field.
2.	 Expand	the	Measures	menu	and	write	an	appropriate	name	in	the	Label

text	field.
3.	 Expand	the	Appearance	menu	and	turn	the	Value	labels	option	on	to	see

the	exact	value	on	the	chart.

These	steps	are	demonstrated	in	the	following	screenshot:	



	

Finally,	in	the	pie	chart	we	created	before	this	bar	chart,	Retail	and	Horeca
customers	appeared	colored	in	blue	and	red,	but	in	the	bar	chart,	all	bars	are
blue.	In	order	to	have	a	consistent	application	in	terms	of	color,	we'll	change	the
color	properties	of	the	bar	chart	to	have	the	same	colors	as	in	the	pie	chart.	As
you	can	see	in	the	following	screenshot,	we	need	to	turn	off	the	Auto	mode	from
the	Color	option	and	set	it	to	By	dimension:	



	

Now	we've	created	two	plots	that	explain	that	we	have	more	Horeca	customers
than	Retail	customers,	but	on	average	our	Retail	customers	spend	more	money
on	our	business:	



	

I	know	that,	on	average,	I'm	earning	more	money	with	the	Retail	channel
customers,	but	my	next	question	is:	in	which	channel	am	I	earning	more	money
in	absolute	terms?

Create	a	new	bar	chart	with	Channel_Desc	as	the	dimension	and	the	following
six	measures:

Sum([Delicassen])	–	label	it	Delicatessen
Sum([Detergents_Paper])	–	label	it	Detergents
Sum([Fresh])	–	label	it	Fresh
Sum([Frozen])	–	label	it	Frozen
Sum([Grocery])	–	label	it	Grocery
Sum([Milk])	–	label	it	Milk

In	the	Appearance	menu,	expand	the	Presentation	submenu.	In	this	bar	chart,
we'll	see	six	different	measures;	we	can	see	these	measures	grouped	in	six
different	bars	for	Retail	and	six	for	Horeca.	We	also	can	see	the	six	metrics
stacked	in	one	single	bar.	In	this	case,	stacking	the	metrics	in	a	single	bar	has	the
advantage	of	us	being	easily	able	to	see	the	total	money	spent.	This	is	illustrated
in	the	following	screenshot:	



	

With	this	new	bar	chart,	you	can	see	that	we're	earning	8	million	with	our
Horeca	customers	and	6.62	million	with	our	Retail	customers.	We	can	also	see
that	Horeca	customers	spend	4	million	in	Fresh	products.	The	Retail	customers
spend	2.32	million	in	Grocery	products:	



	

We've	created	a	pie	chart	and	two	bar	charts	to	understand	how	Horeca	and
Retail	customers	are	buying	our	products.	Now,	repeat	the	three	charts	by
changing	the	dimension	from	Channel_Desc	to	Region_Desc,	as	shown	in	the
following	screenshot:	



	

To	finish	our	application,	we're	going	to	create	a	table	with	our	top	customers
and	two	filters.	Tables	are	different	from	regular	charts	because	tables	have
columns;	when	you	add	a	new	column	to	a	table,	Qlik	Sense	asks	you	if	the	new
column	is	a	dimension	or	a	measure.	To	create	a	table	of	top	customers,	drag	a
table	and	drop	it	into	the	central	area.	Choose	Customer_ID	as	the	dimension
and	sum(Total_Spent)	as	the	measure.	Limit	the	number	of	customers	to	10	and
sort	by	Total	Spent,	as	shown	here:	



	

To	finish	the	application,	we'll	add	two	filters.	Go	to	the	left-hand	side	bar,	open
the	Fields	list,	and	drag-and-drop	Channel_Desc	and	Region_Desc	into	the



central	area:	

	

Click	on	the	Save	button	on	the	top	bar	and	turn	the	Edit	mode	off.	We've
finished	our	first	application.	In	the	next	section,	we'll	use	this	application	to
answer	business	questions:	



	

These	charts	tell	us	that	67.7	percent	of	our	customers	were	Horeca	customers
and	only	32.3	percent	were	Retail	customers.	On	average,	Retail	customers
spent	more	money	on	our	products,	but	in	absolute	values,	Horeca	customers
spent	more	money.

We	have	three	regions	–	Lisbon,	Porto,	and	Others.	17.5	percent	of	our
customers	were	located	in	Lisbon,	10.7	percent	in	Porto,	and	71.8	percent	in
Other	regions.	The	average	money	spent	is	similar	in	all	the	regions,	but	the
total	spent	is	higher	in	Other	regions	than	in	Lisbon	and	Porto.

Now,	we're	going	to	use	the	filters	to	respond	to	more	questions.



Analyzing	your	data
Our	new	application	has	two	filters	we	can	use	to	get	a	response	to	our
questions.	Select	Horeca	in	the	Channel	filters.	The	application	responds	by
actualizing	the	data.	Now	everything	you	see	is	related	to	the	Horeca	customers.
Use	the	green	or	red	buttons	to	confirm	or	cancel	your	selection.	This	is	depicted
in	the	following	screenshot:	

	

In	the	following	screenshot,	I've	selected	Horeca	and	Porto,	and	in	the	Top
Customers	table,	I	can	see	the	top	10	Horeca	customers	in	Porto.	Now	you	can
use	the	filters	and	the	visualizations	we've	created	to	answer	your	own	questions:



	
Tip



You	can	filter	the	data	using	the	filters	we've	put	in	the	application	or	you	can
filter	the	data	by	clicking	on	the	charts.

Finally,	I've	created	a	new	sheet	called	360º	Analysis.	In	this	last	sheet,	we
analyze	the	customer	average	money	spent	and	the	total	money	spent	in	the	two
different	sales	channels,	the	three	regions,	and	the	six	different	product
categories.	The	following	screenshot	represents	all	this:	

	

In	the	bottom-right,	you	can	see	a	scatter	plot.	In	this	chart,	each	point	represents
a	customer.	The	y	axis	represents	the	money	spent	on	Detergents_Paper	and	the
x	axis	represents	the	money	spent	on	Food.	At	the	beginning	of	this	chapter,	we
created	the	field	Food	to	be	able	to	represent	the	customer's	behavior	on	a	plane.

Now	try	to	select	the	Retail	customers	directly	on	a	chart.	All	of	the	charts	will
update	automatically	to	represent	only	Retail	customers.

Finally,	cancel	your	selection	and	select	a	single	customer.	On	the	Total	Spent
by	Product	bar	chart,	you	can	see	the	money	spent	by	this	customer	in	each
category.

Now	it's	your	turn	to	try	to	create	new	charts	with	Qlik	Sense	and	explore	your
customers'	characteristics	even	more.



Further	learning
In	this	chapter,	we've	learned	three	main	things	about	Qlik	Sense	–	how	to	load
and	transform	data,	how	to	make	selections	to	filter	data,	and	how	to	create	basic
visualizations.

To	find	out	more	information	about	these	features,	I	suggest	you	go	through	this
document	created	by	Michael	Tarallo	on	the	Qlik	Community	–
https://community.qlik.com/docs/DOC-6932.

For	data	loading,	you	will	find	a	section	in	the	previous	document	called	Data
Loading	&	Modeling,	but	we	especially	like	Power	of	Qlik	Script,	a	series	of
three	videos.	There	is	a	special	video	to	learn	how	associative	logic	works,
called	Working	with	Selections,	and	in	the	Apps	&	Visualizations	sections,	you'll
find	videos	that	explain	how	to	create	data	visualizations.

Qlik	Community	is	a	very	active	users'	community	around	the	Qlik	platform.	You
will	find	a	lot	of	resources	related	to	Qlik	Sense	on	this	site.	I	strongly
recommend	you	to	register	with	Qlik	Community.

https://community.qlik.com/docs/DOC-6932


Summary
In	this	chapter,	we	saw	how	to	use	Qlik	Sense	to	create	an	application	that	helps
us	to	analyze	our	customer	data.	We	used	a	simple	dataset	with	just	440
customers	that	we	downloaded	from	the	University	of	California	website
mentioned	earlier.	The	dataset	contained	only	two	dimensions—channel	and
region—and	six	measures—Fresh,	Frozen,	Milk,	Grocery,	Delicatessen,	and
Detergents_Paper.

We	learned	how	to	load	a	dataset	from	a	CSV	file.	We	created	a	data	model	and
uploaded	additional	tables	created	in	a	spreadsheet	editor.	Finally,	we	saw	that
we	can	create	additional	fields	in	a	table	using	the	spreadsheet	editor	or	the	data
load	editor.	We	also	saw	that	the	data	load	editor	provides	a	lot	of	control	over
the	data.

After	creating	the	data	model,	we	learned	what	associative	logic	is	and	how	a
business	user	can	slice	and	dice	his	data	using	it.

Finally,	we	learned	how	to	create	basic	visualizations	using	Qlik	Sense,	and	we
created	our	first	Qlik	Sense	app.

In	the	next	chapter,	we'll	use	Rattle	to	segment	the	customers	automatically
based	on	their	annual	money	spent	in	the	different	product	categories.	This
segmentation	will	show	us	the	data	in	a	different	light.

In	Chapter	8,	Visualizations,	Data	Applications,	Dashboards,	and	Data
Storytelling,	we'll	improve	our	knowledge	of	Qlik	Sense	and	learn	to	create
useful	and	attractive	visualizations.



Chapter	5.	Clustering	and	Other
Unsupervised	Learning	Methods
In	this	chapter,	we	will:

Define	machine	learning
Introduce	unsupervised	and	supervised	methods
Focus	on	K-means,	a	classic	machine	learning	algorithm,	in	detail

We'll	use	K-means	to	improve	the	application	we	created	in	Chapter	4,	Creating
Your	First	Qlik	Sense	Application.	In	Chapter	4,	Creating	Your	First	Qlik	Sense
Application,	we	created	a	Qlik	Sense	application	to	understand	our	customers'
behavior.	In	this	chapter,	we'll	create	clusters	of	customers	based	on	their	annual
money	spent.	This	will	give	us	a	new	insight.	Being	able	to	group	our	customers
based	on	their	annual	money	spent	will	allow	us	to	see	the	profitability	of	each
customer	group	and	deliver	more	profitable	marketing	campaigns	or	create
tailored	discounts.

Finally,	we'll	see	hierarchical	clustering,	different	clustering	methods,	and
association	rules.	Association	rules	are	generally	used	for	market	basket
analysis.



Machine	learning	–	unsupervised	and
supervised	learning
Machine	Learning	(ML)	is	a	set	of	techniques	and	algorithms	that	gives
computers	the	ability	to	learn.	These	techniques	are	generic	and	can	be	used	in
various	fields.	Data	mining	uses	ML	techniques	to	create	insights	and	predictions
from	data.

In	data	mining,	we	usually	divide	ML	methods	into	two	main	groups	–
supervised	learning	and	unsupervised	learning.	A	computer	can	learn	with	the
help	of	a	teacher	(supervised	learning)	or	can	discover	new	knowledge	without
the	assistance	of	a	teacher	(unsupervised	learning).

In	supervised	learning,	the	learner	is	trained	with	a	set	of	examples	(dataset)
that	contains	the	right	answer;	we	call	it	the	training	dataset.	We	call	the	dataset
that	contains	the	answers	a	labeled	dataset,	because	each	observation	is	labeled
with	its	answer.	In	supervised	learning,	you	are	supervising	the	computer,	giving
it	the	right	answers.	For	example,	a	bank	can	try	to	predict	the	borrower's	chance
of	defaulting	on	credit	loans	based	on	the	experience	of	past	credit	loans.	The
training	dataset	would	contain	data	from	past	credit	loans,	including	if	the
borrower	was	a	defaulter	or	not.

In	unsupervised	learning,	our	dataset	doesn't	have	the	right	answers	and	the
learner	tries	to	discover	hidden	patterns	in	the	data.	In	this	way,	we	call	it
unsupervised	learning	because	we're	not	supervising	the	computer	by	giving	it
the	right	answers.	A	classic	example	is	trying	to	create	a	classification	of
customers.	The	model	tries	to	discover	similarities	between	customers.

In	some	machine	learning	problems,	we	don't	have	a	dataset	that	contains	past
observations.	These	datasets	are	not	labeled	with	the	correct	answers	and	we	call
them	unlabeled	datasets.

In	traditional	data	mining,	the	terms	descriptive	analytics	and	predictive
analytics	are	used	for	unsupervised	learning	and	supervised	learning.

In	unsupervised	learning,	there	is	no	target	variable.	The	objective	of



unsupervised	learning	or	descriptive	analytics	is	to	discover	the	hidden	structure
of	data.	There	are	two	main	unsupervised	learning	techniques	offered	by	Rattle:

Cluster	analysis
Association	analysis



Cluster	analysis
Sometimes,	we	have	a	group	of	observations	and	we	need	to	split	it	into	a
number	of	subsets	of	similar	observations.	Cluster	analysis	is	a	group	of
techniques	that	will	help	you	to	discover	these	similarities	between	observations.

Market	segmentation	is	an	example	of	cluster	analysis.	You	can	use	cluster
analysis	when	you	have	a	lot	of	customers	and	you	want	to	divide	them	into
different	market	segments,	but	you	don't	know	how	to	create	these	segments.

Remember	the	application	we	developed	in	Chapter	4,	Creating	Your	First	Qlik
Sense	Application?	We	started	with	a	dataset	containing	440	customers;	each
observation	contained	the	money	the	amount	of	customer	spent	in	six	different
product	categories.	We	used	Qlik	Sense	to	create	an	application	that	helps	us	to
understand	our	customers.	Sometimes,	especially	with	a	large	amount	of
customers,	we	need	some	help	to	understand	our	data.	Clustering	can	help	us	to
create	different	customer	groups	based	on	their	buying	behavior.

In	Rattle's	Cluster	tab,	there	are	four	cluster	algorithms:

KMeans
EwKm
Hierarchical
BiCluster

The	two	most	popular	families	of	cluster	algorithms	are	hierarchical	clustering
and	centroid-based	clustering:

	
Centroid-based	clustering	the	using	K-means	algorithm



I'm	going	to	use	K-means	as	an	example	of	this	family	because	it	is	the	most
popular.

With	this	algorithm,	a	cluster	is	represented	by	a	point	or	center	called	the
centroid.	In	the	initialization	step	of	K-means,	we	need	to	create	k	number	of
centroids;	usually,	the	centroids	are	initialized	randomly.	In	the	following
diagram,	the	observations	or	objects	are	represented	with	a	point	and	three
centroids	are	represented	with	three	colored	stars:

	

After	this	initialization	step,	the	algorithm	enters	into	an	iteration	with	two
operations.	The	computer	associates	each	object	with	the	nearest	centroid,
creating	k	clusters.	Now,	the	computer	has	to	recalculate	the	centroids'	position.
The	new	position	is	the	mean	of	each	attribute	of	every	cluster	member.

This	example	is	very	simple,	but	in	real	life,	when	the	algorithm	associates	the
observations	with	the	new	centroids,	some	observations	move	from	one	cluster
to	the	other.

The	algorithm	iterates	by	recalculating	centroids	and	assigning	observations	to
each	cluster	until	some	finalization	condition	is	reached,	as	shown	in	this
diagram:



	

The	inputs	of	a	K-means	algorithm	are	the	observations	and	the	number	of
clusters,	k.	The	final	result	of	a	K-means	algorithm	are	k	centroids	that	represent
each	cluster	and	the	observations	associated	with	each	cluster.

The	drawbacks	of	this	technique	are:

You	need	to	know	or	decide	the	number	of	clusters,	k.
The	result	of	the	algorithm	has	a	big	dependence	on	k.
The	result	of	the	algorithm	depends	on	where	the	centroids	are	initialized.
There	is	no	guarantee	that	the	result	is	the	optimum	result.	The	algorithm
can	iterate	around	a	local	optimum.

In	order	to	avoid	a	local	optimum,	you	can	run	the	algorithm	many	times,
starting	with	different	centroids'	positions.	To	compare	the	different	runs,	you
can	use	the	cluster's	distortion	–	the	sum	of	the	squared	distances	between	each
observation	and	its	centroids.

Customer	segmentation	with	K-means	clustering

We're	going	to	use	the	wholesale	customer	dataset	we	downloaded	from	the
Center	for	Machine	Learning	and	Intelligent	Systems	at	the	University	of
California,	Irvine,	in	Chapter	4,	Creating	Your	First	Qlik	Sense	Application.	You
can	download	the	dataset	from	here	–
https://archive.ics.uci.edu/ml/datasets/Wholesale+customers#.

https://archive.ics.uci.edu/ml/datasets/Wholesale+customers


As	we	saw	in	Chapter	4,	Creating	Your	First	Qlik	Sense	Application,	the	dataset
contains	440	customers	(observations)	of	a	wholesale	distributor.	It	includes	the
annual	spend	in	monetary	units	on	six	product	categories	–	Fresh,	Milk,
Grocery,	Frozen,	Detergents_Paper,	and	Delicatessen.	We've	created	a	new
field	called	Food	that	includes	all	categories	except	Detergents_Paper,	as
shown	in	the	following	screenshot:

	

Load	the	new	dataset	into	Rattle	and	go	to	the	Cluster	tab.	Remember	that,	in
unsupervised	learning,	there	is	no	target	variable.

I	want	to	create	a	segmentation	based	only	on	buying	behavior;	for	this	reason,	I
set	Region	and	Channel	to	Ignore,	as	shown	here:



	

In	the	following	screenshot,	you	can	see	the	options	Rattle	offers	for	K-means.
The	most	important	one	is	Number	of	clusters;	as	we've	seen,	the	analyst	has	to
decide	the	number	of	clusters	before	running	K-means:



	

We	have	also	seen	that	the	initial	position	of	the	centroids	can	have	some
influence	on	the	result	of	the	algorithm.	The	position	of	the	centroids	is	random,
but	we	need	to	be	able	to	reproduce	the	same	experiment	multiple	times.	When
we're	creating	a	model	with	K-means,	we'll	iteratively	re-run	the	algorithm,
tuning	some	options	in	order	to	improve	the	performance	of	the	model.	In	this
case,	we	need	to	be	able	to	reproduce	exactly	the	same	experiment.	Under	the
hood,	R	has	a	pseudo-random	number	generator	based	on	a	starting	point	called
Seed.	If	you	want	to	reproduce	the	exact	same	experiment,	you	need	to	re-run
the	algorithm	using	the	same	Seed.

Sometimes,	the	performance	of	K-means	depends	on	the	initial	position	of	the
centroids.	For	this	reason,	sometimes	you	need	to	able	to	re-run	the	model	using
a	different	initial	position	for	the	centroids.	To	run	the	model	with	different
initial	positions,	you	need	to	run	with	a	different	Seed.

After	executing	the	model,	Rattle	will	show	some	interesting	information.	The
size	of	each	cluster,	the	means	of	the	variables	in	the	dataset,	the	centroid's
position,	and	the	Within	cluster	sum	of	squares	value.	This	measure,	also
called	distortion,	is	the	sum	of	the	squared	differences	between	each	point	and	its
centroid.	It's	a	measure	of	the	quality	of	the	model.



Another	interesting	option	is	Runs;	by	using	this	option,	Rattle	will	run	the
model	the	specified	number	of	times	and	will	choose	the	model	with	the	best
performance	based	on	the	Within	cluster	sum	of	squares	value.

Deciding	on	the	number	of	clusters	can	be	difficult.	To	choose	the	number	of
clusters,	we	need	a	way	to	evaluate	the	performance	of	the	algorithm.	The	sum
of	the	squared	distance	between	the	observations	and	the	associated	centroid
could	be	a	performance	measure.	Each	time	we	add	a	centroid	to	KMeans,	the
sum	of	the	squared	difference	between	the	observations	and	the	centroids
decreases.	The	difference	in	this	measure	using	a	different	number	of	centroids	is
the	gain	associated	to	the	added	centroids.	Rattle	provides	an	option	to	automate
this	test,	called	Iterative	Clusters.

If	you	set	the	Number	of	clusters	value	to	10	and	check	the	Iterate	Clusters
option,	Rattle	will	run	KMeans	iteratively,	starting	with	3	clusters	and	finishing
with	10	clusters.	To	compare	each	iteration,	Rattle	provides	an	iteration	plot.	In
the	iteration	plot,	the	blue	line	shows	the	sum	of	the	squared	differences	between
each	observation	and	its	centroid.	The	red	line	shows	the	difference	between	the
current	sum	of	squared	distances	and	the	sum	of	the	squared	distance	of	the
previous	iteration.	For	example,	for	four	clusters,	the	red	line	has	a	very	low
value;	this	is	because	the	difference	between	the	sum	of	the	squared	differences
with	three	clusters	and	with	four	clusters	is	very	small.	In	the	following
screenshot,	the	peak	in	the	red	line	suggests	that	six	clusters	could	be	a	good
choice.

This	is	because	there	is	an	important	drop	in	the	Sum	of	WithinSS	value	at	this
point:



	

In	this	way,	to	finish	my	model,	I	only	need	to	set	the	Number	of	clusters	to	6,
uncheck	the	Re-Scale	checkbox,	and	click	on	the	Execute	button:



	

Finally,	Rattle	returns	the	six	centroids	of	my	clusters:

	

Now	we	have	the	six	centroids	and	we	want	Rattle	to	associate	each	observation
with	a	centroid.	Go	to	the	Evaluate	tab,	select	the	KMeans	option,	select	the
Training	dataset,	mark	All	in	the	report	type,	and	click	on	the	Execute	button	as
shown	in	the	following	screenshot.	This	process	will	generate	a	CSV	file	with
the	original	dataset	and	a	new	column	called	kmeans.	The	content	of	this
attribute	is	a	label	(a	number)	representing	the	cluster	associated	with	the
observation	(customer),	as	shown	in	the	following	screenshot:

	



After	clicking	on	the	Execute	button,	you	will	need	to	choose	a	folder	to	save
the	resulting	file	to	and	will	have	to	type	in	a	filename.	The	generated	data	inside
the	CSV	file	will	look	similar	to	the	following	screenshot:

	

In	the	previous	screenshot,	you	can	see	ten	lines	of	the	resulting	file;	note	that
the	last	column	is	kmeans.

Preparing	the	data	in	Qlik	Sense

Our	objective	is	to	create	the	same	data	model	that	we	created	in	Chapter	4,
Creating	Your	First	Qlik	Sense	Application,	but	using	the	new	CSV	file	with	the
kmeans	column.	We	have	two	options	–	we	can	reproduce	all	the	steps	we
performed	in	the	previous	chapter	to	create	a	new	application	with	the	new	file
or	we	can	update	the	Qlik	Sense	application	we	developed	in	the	previous
chapter.

We're	going	to	update	our	application	by	replacing	the	customer	data	file	with
this	new	data	file.	Save	the	new	file	in	the	same	folder	as	the	original	file,	open
the	Qlik	Sense	application,	and	go	to	Data	load	editor.

There	are	two	differences	between	the	original	file	and	this	one.	In	the	original
file,	we	added	a	line	to	create	a	customer	identifier	called	Customer_ID,	and	in
this	second	file	we	have	this	field	in	the	dataset.	The	second	difference	is	that	in
this	new	file	we	have	the	kmeans	column.

From	Data	load	editor,	go	to	the	Wholesale	customer	data	sheet,	modify	line
2,	and	add	line	3.	In	line	2,	we	just	load	the	content	of	Customer_ID,	and	in	line
3,	we	load	the	content	of	the	kmeans	field	and	rename	it	to	Cluster,	as	shown	in



the	following	screenshot.	Finally,	update	the	name	of	the	file	to	be	the	new	one
and	click	on	the	Load	data	button:

	

When	the	data	load	process	finishes,	open	the	data	model	viewer	to	check	your
data	model,	as	shown	here:



	

Note	that	you	have	the	same	data	model	with	a	new	field	called	Cluster.

Creating	a	customer	segmentation	sheet	in	Qlik	Sense

Now	we	can	add	a	sheet	to	the	application	we	developed	in	Chapter	4,	Creating
Your	First	Qlik	Sense	Application.	We'll	add	three	charts	to	see	our	clusters	and
how	our	customers	are	distributed	in	our	clusters.	The	first	chart	will	describe
the	buying	behavior	of	each	cluster,	as	shown	here:

	

The	second	chart	will	show	all	customers	distributed	in	a	scatter	plot,	and	in	the
last	chart	we'll	see	the	number	of	customers	that	belong	to	each	cluster,	as	shown
here:

	

I'll	start	with	the	chart	to	the	bottom-right;	it's	a	bar	chart	with	Cluster	as	the
dimension	and	Count([Customer_ID])	as	the	measure.	This	simple	bar	chart	has
something	special	–	colors.	Each	customer's	cluster	has	a	special	color	code	that
we	use	in	all	charts.	In	this	way,	cluster	5	is	blue	in	the	three	charts.	To	obtain
this	effect,	we	use	this	expression	to	define	the	color	as



color(fieldindex('Cluster',	Cluster)),	which	is	shown	in	the	following
screenshot:

	
Tip

You	can	find	this	color	trick	and	more	in	this	interesting	blog	by	Rob
Wunderlich	–	http://qlikviewcookbook.com/.

My	second	chart	is	the	one	at	the	top.	I	copied	the	previous	chart	and	pasted	it
onto	a	free	place.	I	kept	the	dimension	but	I	changed	the	measure	by	using	six
new	measures:

Avg([Detergents_Paper])

Avg([Delicassen])

Avg([Fresh])

Avg([Frozen])

Avg([Grocery])

Avg([Milk])

I	placed	my	last	chart	at	the	bottom-left.	I	used	a	scatter	plot	to	represent	all	of
my	440	customers.	I	wanted	to	show	the	money	spent	by	each	customer	on	food
and	detergents,	and	its	cluster.	I	used	the	y	axis	to	show	the	money	spent	on
detergents	and	the	x	axis	for	the	money	spent	on	food.	Finally,	I	used	colors	to
highlight	the	cluster.	The	dimension	is	Customer_Id	and	the	measures	are
Delicassen+Fresh+Frozen+Grocery+Milk	(or	Food)	and	[Detergents_Paper].

http://qlikviewcookbook.com/


As	the	final	step,	I	reused	the	color	expression	from	the	earlier	charts.

Now	our	first	Qlik	Sense	application	has	two	sheets	–	the	original	one	is	100
percent	Qlik	Sense	and	helps	us	to	understand	our	customers,	channels,	and
regions.	This	new	sheet	uses	clustering	to	give	us	a	different	point	of	view;	this
second	sheet	groups	the	customers	by	their	similar	buying	behavior.	All	this
information	is	useful	to	deliver	better	campaigns	to	our	customers.	Cluster	5	is
our	least	profitable	cluster,	but	is	the	biggest	one	with	227	customers.	The	main
difference	between	cluster	5	and	cluster	2	is	the	amount	of	money	spent	on	fresh
products.	Can	we	deliver	any	offer	to	customers	in	cluster	5	to	try	to	sell	more
fresh	products?

Select	retail	customers	and	ask	yourself,	who	are	our	best	retail	customers?	To
which	cluster	do	they	belong?	Are	they	buying	all	our	product	categories?



Hierarchical	clustering
Hierarchical	clustering	tries	to	group	objects	based	on	their	similarity.	To	explain
how	this	algorithm	works,	we're	going	to	start	with	seven	points	(or
observations)	lying	in	a	straight	line:

	

We	start	by	calculating	the	distance	between	each	point.	I'll	come	back	later	to
the	term	distance;	in	this	example,	distance	is	the	difference	between	two
positions	in	the	line.	The	points	D	and	E	are	the	ones	with	the	smallest	distance
in	between,	so	we	group	them	in	a	cluster,	as	shown	in	this	diagram:

	

Now,	we	substitute	point	D	and	point	E	for	their	mean	(red	point)	and	we	look
for	the	two	points	with	the	next	smallest	distance	in	between.	In	this	second
iteration,	the	closest	points	are	B	and	C,	as	shown	in	this	diagram:

	

We	continue	iterating	until	we've	grouped	all	observations	in	the	dataset,	as



shown	here:

	

Note	that,	in	this	algorithm,	we	can	decide	on	the	number	of	clusters	after
running	the	algorithm.	If	we	divide	the	dataset	into	two	clusters,	the	first	cluster
is	point	G	and	the	second	cluster	is	A,	B,	C,	D,	E,	and	F.	This	gives	the	analyst
the	opportunity	to	see	the	big	picture	before	deciding	on	the	number	of	clusters.

The	lowest	level	of	clustering	is	a	trivial	one;	in	this	example,	seven	clusters
with	one	point	in	each	one.

The	chart	I've	created	while	explaining	the	algorithm	is	a	basic	form	of	a
dendrogram.	The	dendrogram	is	a	tree	diagram	used	in	Rattle	and	in	other	tools
to	illustrate	the	layout	of	the	clusters	produced	by	hierarchical	clustering.

In	the	following	screenshot,	we	can	see	the	dendrogram	created	by	Rattle	for	the
wholesale	customer	dataset.	In	Rattle's	dendrogram,	the	y	axis	represent	all
observations	or	customers	in	the	dataset,	and	the	x	axis	represents	the	distance
between	the	clusters:



	



Association	analysis
Association	rules	or	association	analysis	is	also	an	important	topic	in	data
mining.	This	is	an	unsupervised	method,	so	we	start	with	an	unlabeled	dataset.
An	unlabeled	dataset	is	a	dataset	without	a	variable	that	gives	us	the	right
answer.	Association	analysis	attempts	to	find	relationships	between	different
entities.	The	classic	example	of	association	rules	is	market	basket	analysis.	This
means	using	a	database	of	transactions	in	a	supermarket	to	find	items	that	are
bought	together.	For	example,	a	person	who	buys	potatoes	and	burgers	usually
buys	beer.	This	insight	could	be	used	to	optimize	the	supermarket	layout.

Online	stores	are	also	a	good	example	of	association	analysis.	They	usually
suggest	to	you	a	new	item	based	on	the	items	you	have	bought.	They	analyze
online	transactions	to	find	patterns	in	the	buyer's	behavior.

These	algorithms	assume	all	variables	are	categorical;	they	perform	poorly	with
numeric	variables.	Association	methods	need	a	lot	of	time	to	be	completed;	they
use	a	lot	of	CPU	and	memory.	Remember	that	Rattle	runs	on	R	and	the	R	engine
loads	all	data	into	RAM	memory.

Suppose	we	have	a	dataset	such	as	the	following:

	

Our	objective	is	to	discover	items	that	are	purchased	together.	We'll	create	rules
and	we'll	represent	these	rules	like	this:

Chicken,	Potatoes	→	Clothes

This	rule	means	that	when	a	customer	buys	Chicken	and	Potatoes,	he	tends	to
buy	Clothes.



As	we'll	see,	the	output	of	the	model	will	be	a	set	of	rules.	We	need	a	way	to
evaluate	the	quality	or	interest	of	a	rule.	There	are	different	measures,	but	we'll
use	only	a	few	of	them.	Rattle	provides	three	measures:

Support
Confidence
Lift

Support	indicates	how	often	the	rule	appears	in	the	whole	dataset.	In	our
dataset,	the	rule	Chicken,	Potatoes	→	Clothes	has	a	support	of	48.57	percent	(3
occurrences	/	7	transactions).

Confidence	measures	how	strong	rules	or	associations	are	between	items.	In	this
dataset,	the	rule	Chicken,	Potatoes	→	Clothes	has	a	confidence	of	1.	The	items
Chicken	and	Potatoes	appear	three	times	in	the	dataset	and	the	items	Chicken,
Potatoes,	and	Clothes	appear	three	times	in	the	dataset;	and	3/3	=	1.	A
confidence	close	to	1	indicates	a	strong	association.

In	the	following	screenshot,	I've	highlighted	the	options	on	the	Associate	tab	we
have	to	choose	from	before	executing	an	association	method	in	Rattle:

	

The	first	option	is	the	Baskets	checkbox.	Depending	on	the	kind	of	input	data,
we'll	decide	whether	or	not	to	check	this	option.	If	the	option	is	checked,	such	as
in	the	preceding	screenshot,	Rattle	needs	an	identification	variable	and	a	target
variable.	After	this	example,	we'll	try	another	example	without	this	option.

The	second	option	is	the	minimum	Support	value;	by	default,	it	is	set	to	0.1.
Rattle	will	not	return	rules	with	a	lower	Support	value	than	the	one	you	have	set
in	this	text	box.	If	you	choose	a	higher	value,	Rattle	will	only	return	rules	that
appear	many	times	in	your	dataset.	If	you	choose	a	lower	value,	Rattle	will
return	rules	that	appear	in	your	dataset	only	a	few	times.	Usually,	if	you	set	a
high	value	for	Support,	the	system	will	return	only	the	obvious	relationships.	I



suggest	you	start	with	a	high	Support	value	and	execute	the	methods	many
times	with	a	lower	value	in	each	execution.	In	this	way,	in	each	execution,	new
rules	will	appear	that	you	can	analyze.

The	third	parameter	you	have	to	set	is	Confidence.	This	parameter	tells	you	how
strong	the	rule	is.

Finally,	the	length	is	the	number	of	items	that	contains	a	rule.	A	rule	like	Beer	è
Chips	has	length	of	two.	The	default	option	for	Min	Length	is	2.	If	you	set	this
variable	to	2,	Rattle	will	return	all	rules	with	two	or	more	items	in	it.

After	executing	the	model,	you	can	see	the	rules	created	by	Rattle	by	clicking	on
the	Show	Rules	button,	as	illustrated	here:

	

Rattle	provides	a	very	simple	dataset	to	test	the	association	rules	in	a	file	called
dvdtrans.csv.	Test	the	dataset	to	learn	about	association	rules.



Further	learning
In	this	chapter,	we	introduced	supervised	and	unsupervised	learning,	the	two
main	subgroups	of	machine	learning	algorithms;	if	you	want	to	learn	more	about
machine	learning,	I	suggest	you	complete	a	MOOC	course	called	Machine
Learning	at	Coursera:

https://www.coursera.org/learn/machine-learning

The	acronym	MOOC	stands	for	Massive	Open	Online	Course;	these	are
courses	open	to	participation	via	the	Internet.	These	courses	are	generally	free.
Coursera	is	one	of	the	leading	platforms	for	MOOC	courses.

Machine	Learning	is	a	great	course	designed	and	taught	by	Andrew	Ng,
Associate	Professor	at	Stanford	University;	Chief	Scientist	at	Baidu;	and
Chairman	and	Co-founder	at	Coursera.	This	course	is	really	interesting.

A	very	interesting	book	is	Machine	Learning	with	R	by	Brett	Lantz,	Packt
Publishing.	This	book	contains	a	very	interesting	chapter	about	clustering	and	K-
means	with	R.

https://www.coursera.org/learn/machine-learning


Summary
In	this	chapter,	we	were	introduced	to	machine	learning,	and	supervised	and
unsupervised	methods.	We	focused	on	unsupervised	methods	and	covered
centroid-based	clustering,	hierarchical	clustering,	and	association	rules.

We	completed	the	application	we	started	in	Chapter	4,	Creating	Your	First	Qlik
Sense	Application.	We	used	a	simple	dataset,	but	we	saw	how	a	clustering
algorithm	can	complement	a	100	percent	Qlik	Sense	approach	by	adding	more
information.

In	the	next	chapter,	we'll	cover	supervised	methods	and	we'll	use	decision	trees
as	an	example.



Chapter	6.	Decision	Trees	and	Other
Supervised	Learning	Methods
In	the	previous	chapter,	we	introduced	Machine	Learning,	unsupervised
methods,	and	supervised	methods.	We	focused	on	unsupervised	learning	and
described	some	algorithms,	we	also	concentrated	on	classifiers.	We	took	time	to
study	cluster	analysis,	focusing	on	centroids-based	algorithms,	and	we	also
looked	at	hierarchical	clustering.

We	used	Rattle	to	process	customer	data	in	order	to	create	different	clusters	of
customers,	and	then,	we	used	Qlik	Sense	to	visualize	these	different	clusters.

The	objective	of	this	chapter	is	to	introduce	you	to	supervised	learning.	As	I
explained	in	the	previous	chapter,	in	supervised	learning,	the	computer	analyzes
a	set	of	examples	to	learn	how	to	predict	the	output	of	a	new	situation.

We'll	focus	on	Decision	Tree	Learning,	or	Decision	Trees,	because	they're
widely	used	and	the	knowledge	learned	by	the	tree	is	easy	to	translate	to	rules	in
any	software,	such	as	Qlik	Sense.	These	rules	are	easy	to	understand	for	human
experts.

In	supervised	learning,	we	split	the	dataset	into	three	datasets—training,
validation,	and	test.	The	training	dataset	usually	contains	70	percent	of	the
original	observations,	our	algorithm	will	use	this	dataset	in	the	training	phase	to
learn	by	example.	Each	of	the	validation	and	test	datasets	usually	contains	15
percent	of	the	original	observations.	We'll	use	the	validation	dataset	to	fine-tune
our	algorithm,	and	finally,	after	the	fine-tuning,	we'll	use	the	test	dataset	to
evaluate	the	final	performance	of	our	algorithm.	These	three	datasets	match	with
the	three	phases	of	a	supervised	algorithm—training,	validation	(or	tuning),	and
test	(or	performance	evaluation).

In	this	chapter:

We'll	describe	the	main	concepts	of	Decision	Tree	Learning.
We'll	review	the	algorithm	and	the	possible	applications,	and	we'll	see
examples	based	on	these	algorithms.
Then,	we'll	use	Rattle	and	Qlik	Sense	to	create	an	application	to	classify



new	loan	applications	into	low	risk	applications	and	high	risk	applications.
We'll	load	that	data	into	Qlik	Sense	and	create	a	few	example	visualizations.
After	Decision	Trees,	we'll	look	at	ensemble	methods	and	Supported	Vector
Machines.
Finally,	we'll	look	at	Neural	Networks,	which	can	be	used	as	supervised	or
unsupervised	learning	and	statistics	methods	such	as	Regression	or	Survival
Analysis.



Partitioning	datasets	and	model
optimization
As	we've	explained,	in	supervised	learning,	we	split	the	dataset	in	three	subsets
—training,	validation,	and	testing:

	

To	create	the	model	or	learner,	Rattle	uses	the	training	dataset.	After	creating	a
model,	we	use	the	validation	data	to	evaluate	its	performance.	To	improve	the
performance,	depending	on	the	algorithm	we're	using,	we	can	use	different
tuning	options.	After	tuning,	we	rebuild	the	model	and	evaluate	its	performance
again.	This	is	an	iterative	process;	we	create	the	model	and	evaluate	it	until	we're
fine	with	its	performance.

For	simplicity,	in	this	chapter,	we'll	see	only	model	creation,	and	in	the	following
chapter,	we'll	see	model	optimization,	but	in	real	life,	this	is	an	iterative	process.

The	examples	in	this	chapter	will	not	have	any	optimization.

Finally,	when	you're	happy	with	the	model,	you	can	use	the	testing	dataset	to
confirm	its	performance.	You	need	to	use	the	testing	dataset	because	you've	used
the	validation	dataset	to	optimize	the	model.	You	need	to	be	sure	that	the
optimizations	you've	done,	work	for	all	data,	not	just	for	the	validation	data.

Rattle	splits	the	data	randomly	to	assure	that	each	dataset	is	representative,	but
when	we	optimize	the	model	and	test	it	again,	we	need	to	be	able	to	repeat	the
same	experiment	exactly,	with	the	same	data.	In	this	way,	we'll	be	able	to	know
if	we're	improving	the	model	performance.	To	solve	this	problem,	Rattle	splits
the	dataset	using	a	pseudo	random	number	generator.	Every	time	we	split	the
dataset	using	the	same	Seed,	we'll	have	the	same	subsets.



Decision	Tree	Learning
Decision	Tree	Learning	uses	past	observations	to	learn	how	to	classify	them	and
also	try	to	predict	the	class	of	a	new	observation.	For	example,	in	a	bank,	we
may	have	historical	information	on	the	granting	of	loans.	Usually,	past	loan
information	includes	a	customer	profile	and	whether	the	customer	defaulted	or
not.	Based	on	this	information,	the	algorithm	can	learn	to	predict	whether	a	new
customer	will	default.

We	usually	represent	a	Decision	Tree	as	we	did	in	the	following	diagram.	The
root	node	is	at	the	top,	and	the	leaves	of	the	tree	are	at	the	bottom,	the	leaves
represent	a	decision.	In	order	to	create	rules	from	a	tree,	we	need	to	start	from
the	root	node,	and	then	we	work	downwards,	towards	the	leaves.	The	following
diagram	represents	a	sample	Decision	Tree:

	

After	studying	the	preceding	diagram	of	a	Decision	Tree,	we	can	obtain	these
rules:



If	Purpose	=	'Education'	AND	Sex	=	'male'	AND	Age	>	25	Then	No	

Default

If	Purpose	=	'Education'	AND	Sex	=	'male'	AND	Age	<	25	Then	Yes	

Default

As	you	can	see,	a	tree	is	easy	to	translate	to	a	set	of	rules	or	If	then	sentences.
This	is	very	useful	for	calculation	by	Rattle,	or	any	other	language,	or	system,
such	as	Qlik	Sense.

Finally,	a	human	expert	can	understand	the	rules	and	the	knowledge	learned	by
the	algorithm;	in	this	way,	a	credit	manager	can	understand	and	review	why	a
computer	has	classified	a	loan	application	as	dangerous	or	not	dangerous.

In	short,	the	main	advantages	of	Decision	Tree	Learning	are:

The	technique	is	simple
It	requires	little	data	preparation
The	result	is	simple	to	understand	for	a	human	expert
It	is	easy	to	visually	represent

On	the	other	hand,	the	main	disadvantages	are:

Unstable:	A	little	change	in	the	input	data	can	produce	a	big	change	in	the
output.
Overfitting:	Sometimes,	Decision	Tree	Learners	create	very	complex	trees
that	do	not	generalize	the	data	well.	In	other	words,	the	algorithm	learns
how	to	classify	the	learning	dataset,	but	fails	to	classify	new	observations.



Entropy	and	information	gain
Before	we	explain	how	to	create	a	Decision	Tree,	we	need	to	introduce	two
important	concepts—entropy	and	information	gain.

Entropy	measures	the	homogeneity	of	a	dataset.	Imagine	a	dataset	with	10
observations	with	one	attribute,	as	shown	in	the	following	diagram,	the	value	of
this	attribute	is	A	for	the	10	observations.	This	dataset	is	completely
homogenous	and	is	easy	to	predict	the	value	of	the	next	observation,	it'll
probably	be	A:

	

The	entropy	in	a	dataset	that	is	completely	homogenous	is	zero.	Now,	imagine	a
similar	dataset,	but	in	this	dataset	each	observation	has	a	different	value,	as
shown	in	the	following	diagram:

	

Now,	the	dataset	is	very	heterogeneous	and	it's	hard	to	predict	the	following
observation.	In	this	dataset,	the	entropy	is	higher.	The	formula	to	calculate	the



entropy	is	 ,	where	 	is	the	probability	of	x.

Try	to	calculate	the	entropy	for	the	following	datasets:

	

Now,	we	understand	how	entropy	helps	us	to	know	the	level	of	predictability	of
a	dataset.	A	dataset	with	a	low	entropy	level	is	very	predictable;	a	dataset	with	a
high	level	of	entropy	is	very	hard	to	predict.	We're	ready	to	understand
information	gain	and	how	entropy	and	information	gain	can	help	us	to	create	a
Decision	Tree.

The	information	gain	is	a	measure	of	the	decrease	of	entropy	you	achieve	when
you	split	a	dataset.	We	use	it	in	the	process	of	building	a	Decision	Tree.	We're
going	to	use	an	example	to	understand	this	concept.	In	this	example,	our
objective	will	be	to	create	a	tree	to	classify	loan	applications	depending	on	its



probability	of	defaulting,	into	low	risk	applications	and	high	risk	applications.
Our	dataset	has	three	input	variables:	Purpose,	Sex,	and	Age,	and	one	output
variable,	Default?.

The	following	image	shows	the	dataset:

	

To	create	the	Decision	Tree,	we	will	start	by	choosing	an	attribute	for	the	root
node.	This	attribute	will	split	our	dataset	into	two	datasets.	We	will	choose	the
attribute	that	adds	more	predictability	or	reduces	the	entropy.	We	will	start
calculating	the	entropy	for	the	current	dataset:

	

We	will	start	with	an	entropy	of	0.97;	our	objective	is	to	try	to	reduce	the	entropy
to	increase	the	predictability.	What	happens	if	we	choose	the	attribute	Purpose
for	our	root	node?	By	choosing	Purpose	for	our	root	node,	we	will	divide	the
dataset	in	three	datasets.	Each	dataset	contains	five	observations.	We	can
calculate	the	entropy	of	each	dataset	and	aggregate	it	to	have	a	global	entropy



value.

	

The	original	entropy	was	0.97.	If	we	use	Purpose	for	our	root	node	and	divide
the	dataset	into	three	sets,	the	entropy	will	be	0.89,	so	our	new	dataset	will	be
more	predictable.	The	difference	between	the	original	entropy	and	the	new
entropy	is	the	information	gain.	In	this	example,	the	information	gain	is	0.08.
However,	what	happens	if	we	choose	Sex	or	Age	for	our	root	node?

If	we	use	Sex	to	split	the	dataset,	we	create	two	datasets.	The	male	dataset
contains	seven	observations	and	the	female	dataset	contains	eight	observations;
the	new	entropy	is	0.91.	In	this	case,	the	information	gain	is	0.06,	so	Purpose	is
a	better	option	than	Sex	to	split	the	dataset.	Splitting	the	dataset	by	Purpose,	the
result	becomes	more	predictable.	This	is	illustrated	in	the	following	diagram:



	

Finally,	if	we	use	Age	to	split	the	dataset,	we	will	obtain	three	subsets.	The	subset
that	contains	young	people	(<	25)	contains	nine	observations,	the	subset	with
middle-aged	people	contains	four	observations,	and	finally,	the	subset	with
people	older	than	65	years	contains	two	observations.	In	this	case,	the	entropy	is
0.52	and	the	information	gain	is	0.45.

The	attribute	Age	has	the	higher	information	gain;	we	will	choose	it	for	our	root
node,	as	illustrated	in	the	following	diagram:



	

We've	divided	our	dataset	into	three	subsets,	divided	by	Age.

After	the	root	node,	we	need	to	choose	a	second	attribute	to	split	our	three
datasets	and	create	a	deeper	tree.



Underfitting	and	overfitting
Underfitting	and	overfitting	are	problems	not	just	with	a	classifier	but	for	all
supervised	methods.

Imagine	you	have	a	classifier	with	just	one	rule	that	tries	to	distinguish	between
healthy	and	not	healthy	patients.	The	rule	is	as	follows:

If	Temperature	<	37	then	Healthy

This	classifier	will	classify	all	patients	with	a	lower	temperature	than	37	degrees,
as	healthy.	This	classifier	will	have	a	huge	error	rate.	The	tree	that	represents	this
rule	will	have	only	the	root	node	and	two	branches,	with	a	leaf	in	each	branch.

Underfitting	occurs	when	the	tree	is	too	short	to	classify	a	new	observation
correctly;	the	rules	are	too	general.

On	the	other	hand,	if	we	have	a	dataset	with	many	attributes,	and	if	we	generate
a	very	deep	Decision	Tree,	we	risk	the	fact	that	our	Tree	fits	well	with	the
training	dataset,	but	not	able	to	predict	new	examples.	In	our	previous	example,
we	can	have	a	rule	such	as	this:

If	Temperature<27	and	Sintom_A	=	V	……	and	Sintom_B	=	Y	…..Age=12	

and	…	and	Eyes	=	Blue	and	Height	=	182	and	Weight=74.6	then	Healthy

In	this	case,	the	rule	is	too	specific.	What	happens	if	the	weight	of	the	next
patient	is	76?	The	classifier	will	not	be	able	to	classify	the	new	patient	correctly.
The	Tree	is	too	deep	and	the	rules	are	too	specific;	this	problem	is	called
overfitting.	We'll	see	a	very	low	error	rate	on	training	data,	but	a	high	error	rate
on	test	data.

We'll	come	back	to	overfitting	in	the	next	chapter.



Using	a	Decision	Tree	to	classify
credit	risks
In	this	section,	we	will	create	a	model	to	classify	credit	risks.	In	this	section,	we
will	create	the	model;	we	won't	look	at	the	performance	of	the	model.	We'll
evaluate	the	performance	of	the	model	and	improve	it	in	the	next	chapter.

As	we	did	before,	to	create	this	example,	we'll	download	a	dataset	from	the	UCI
Machine	Learning	Repository.	We'll	use	a	dataset	called	Statlog	(German	Credit
Data)	Dataset.	The	source	of	the	dataset	is	Professor	Dr.	Hans	Hofmann	from
Institut	für	Statistik	und	Ökonometrie,	Universität	Hamburg.	The	dataset
classifies	people	described	by	a	set	of	attributes	as	good	or	bad	credit	risks.

The	dataset	is	downloaded	from	the	following	link:

https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29

In	the	following	screenshot,	you	can	see	the	original	form	of	this	dataset.	The
screenshot	shows	us	the	top	ten	lines	of	the	dataset.	The	dataset	doesn't	have	a
header	line.	It	contains	20	attributes,	and	the	last	column	is	the	target	variable—1
for	Good	Credit	and	2	for	Bad	Credit.	The	attributes	are	separated	by	a	blank
space,	as	shown	in	this	screenshot:

	

We	prefer	to	work	with	a	CSV	file	with	a	header	line	and	the	attributes	separated
by	commas.	For	this	reason,	before	loading	the	dataset	into	Rattle,	we	work	it	a
little,	with	a	spreadsheet	editor,	to	transform	the	original	file.

https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29


To	label	each	column,	we	used	the	following	information	document	provided
with	the	dataset:

Column Label Values

1 Status	of	existing	checking	account A11:...	<	0	DM

A12:	0	<=	...	<	200	DM

A13:	...	>=	200	DM	/salary	assignments	for	at
least	1	year

A14:	no	checking	account

2 Duration	in	months Numeric

3 Credit	history A30:	no	credits	taken/all	credits	paid	back
duly

A31:	all	credits	at	this	bank	paid	back	duly

A32:	existing	credits	paid	back	duly	till
now

A33:	delay	in	paying	off	in	the	past

A34:	critical	account/other	credits	existing
(not	at	this	bank)

4 Purpose A40:	car	(new)

A41:	car	(used)

A42:	furniture/equipment

A43:	radio/television

A44:	domestic	appliances

A45:	repairs

A46:	education

A47:	(vacation	-	does	not	exist?)

A48:	retraining

A49:	business



A410:	others

5 Credit	amount Numeric

6 Savings	account/bonds A61:	...	<	100	DM

A62:	100	<=	...	<	500	DM

A63:	500	<=	...	<	1000	DM

A64:	>=	1000	DM

A65:	unknown/	no	savings	account

7 Present	employment	since A71:	unemployed

A72:	...	<	1	year

A73:	1	<=	...	<	4	years

A74:	4	<=	...	<	7	years

A75:	..	>=	7	years

8 Installment	rate	in	percentage	of

disposable	income
Numeric

9 Personal	status	and	sex A91:	male:	divorced/separated

A92:	female:	divorced/separated/married

A93:	male	:	single

A94:	male:	married/widowed

A95:	female:	single

10 Other	debtors/guarantors A101:	none

A102:	co-applicant

A103:	guarantor

11 Present	residence	since Numeric

12 Property A121:	real	estate



A122:	if	not	A121:	building	society	savings
agreement/life	insurance

A123:	if	not	A121/A122	:	car	or	other,	not	in
attribute	6

A124:	unknown/no	property

13 Age	in	years Numeric

14 Other	installment	plans A141:	bank

A142:	stores

A143:	none

15 Housing A151:	rent

A152:	own

A153:	for	free

16 Number	of	existing	credits	at	this
bank

Numeric

17 Job A171:	unemployed/unskilled	-	non-resident

A172:	unskilled	-	resident

A173:	skilled	employee/official

A174:	management/self-employed/

highly	qualified	employee/officer

18 Number	of	people	being	liable	to
provide	maintenance	for

Numeric

19 Telephone A191:	none

A192:	yes,	registered	under	the	customers
name

20 foreign	worker A201:	yes

A202:	no



21 Target 1:	Good

2:	Bad

To	create	our	classifier,	we	will	start	by	loading	the	data	into	Rattle	and
identifying	the	target	variable.	During	the	data	load,	we'll	split	the	dataset	into
three	datasets—the	training	dataset,	the	validation	dataset,	and	the	testing
dataset.	As	we've	explained	in	this	chapter,	we'll	use	the	training	dataset	to	create
our	model,	the	validation	dataset	to	tune	it,	and	the	testing	dataset	to	evaluate	the
final	performance.	We'll	come	back	to	this	in	the	next	chapter	when	we	look	at
cross-validation.	The	following	screenshot	shows	how	to	split	the	original
dataset	into	three	datasets:



	

To	create	a	Decision	Tree,	after	loading	the	credit	data,	go	to	the	Model	tab.	In
this	section,	we	will	use	Tree.	We'll	see	the	other	models	later	in	this	chapter.

In	the	following	screenshot,	we	can	see	that,	to	create	a	Decision	Tree,	Rattle
offers	us	two	algorithms,	traditional	and	conditional.	The	traditional	algorithm
works	as	we've	seen	in	this	chapter.	The	conditional	algorithm	helps	to	address
overfitting;	this	algorithm	can	work	better	than	the	traditional	algorithm	in	many
cases.	To	optimize	our	Tree,	Rattle	has	six	parameters.	As	we'll	see	in	the	next
chapter,	one	of	the	most	common	problems	of	supervised	learning	is	overfitting;
these	parameters	will	help	us	to	avoid	it	by	reducing	the	complexity	of	the
resulting	Tree:

Min	Split:	This	is	the	minimum	number	of	observations	needed	to	create	a
new	branch.
Min	Bucket:	This	is	the	minimum	number	of	observations	in	each	leaf.
Max	Depth:	This	is	the	maximum	depth	of	the	tree.
Complexity:	With	this	parameter,	we	will	control	the	minimum	gain
needed	to	create	a	new	branch.	If	the	value	is	high,	the	resulting	tree	will	be
simple;	if	the	value	is	low,	the	resulting	tree	will	be	more	complex.
Priors:	Sometimes,	the	distribution	of	the	target	variable	doesn't	match
with	the	real	distribution.	Imagine	a	dataset	with	a	lot	of	sick	patients.	We
can	use	this	parameter	to	inform	Rattle	of	the	correct	distribution	of	the
target	variable.
Loss	Matrix:	In	the	next	chapter,	we'll	see	that	in	some	cases,	we	need	to
distinguish	between	different	kinds	of	misclassifications	or	errors.	This
parameter	will	help	us	to	address	this	problem.

Finally,	we've	two	important	buttons:	Rules	and	Draw.	We	will	use	these
buttons	just	after	creating	our	first	tree,	as	shown	here:

	



Set	the	following	parameters	as	in	the	previous	screenshot	and	press	Execute:

Min	Split;	20
Max	Depth:	20
Min	Bucket:	7
Complexity:	0.0100

Rattle	will	create	a	tree	and	will	show	the	new	tree	in	the	screen.	In	the
following	screenshot,	we've	shown	the	root	node	and	the	first	two	branches	of
the	tree:

	

In	the	second	line,	n=	700	is	the	size	of	the	training	set.	Remember	that	our
original	dataset	has	1,000	observations,	but	we've	divided	the	complete	dataset
into	training	(70	percent),	validation	(15	percent),	and	testing	(15	percent).	For
this	reason,	the	size	of	the	training	dataset	is	700.

In	the	fifth	line,	we	see	the	root	node.	The	number	1)	is	the	node;	root	denotes
that	this	is	the	root	node;	700	is	the	number	of	observations;	209	is	the	number	of
observations	misclassified,	1	is	the	default	value	for	the	target	variable,	and
(0.70142857	0.29857143)	is	the	distribution	of	the	target	variable.	In	our
example,	0.7014	of	the	observations	are	classified	as	1	(good	credit	risk)	and
0.2986	are	classified	as	2	(bad	credit	risk).

	

The	following	lines	show	us	the	second	and	third	nodes:



	

In	this	node,	the	symbol	*	in	the	second	node	indicates	that	it's	a	leaf.	The
attribute	Status.of.existing.checking.account	is	used	by	Rattle	to	create	a
branch.	If	the	value	of	this	attribute	is	A13	(>=	200	DM/salary	assignments
for	at	least	1	year)	or	A14	(no	checking	account),	the	observation
belongs	to	the	second	node.	This	second	node	is	a	leaf	with	326	observations
classified	as	1	(good	credit	risk)	and	44	observations	are	misclassified.

If	the	value	of	the	attribute	is	A11	(…	<	0	DM)	or	A12	(0	<=	...	<	200	DM),	the
observation	belongs	to	the	third	node.	This	node	has	374	observations,	but	it's
not	a	leaf	node,	so	under	this	node,	we'll	have	more	branches.

Now,	press	the	Draw	button,	and	you'll	have	a	graphical	representation	of	the
same	tree,	as	shown	here:



	

As	we've	seen,	one	advantage	of	trees	is	that	it	is	easy	to	convert	trees	into	rules
that	are	easy	to	translate	to	other	languages	such	as	SQL,	or	Qlik	Sense.	Now
push	the	Rules	button	to	create	the	set	of	rules.

In	our	example,	Rattle	generates	19	rules.	In	the	next	chapter	we'll	see	how	to
evaluate	the	performance	of	this	model.	Now,	we'll	focus	on	understanding	the
rules	and	how	to	use	them.	In	the	following	screenshot,	we	see	the	first	rule:



	

The	rule	we	see	in	the	previous	screenshot	is	the	rule	number	125.	There	are	9
observations	that	fall	into	this	rule	(cover=9);	these	9	observations	are	1	percent
of	the	dataset.	When	an	observation	falls	under	this	rule,	the	probability	that	the
value	of	the	target	variable	is	I	2	(Target=2),	is	1.0	(prob=1.0).

This	rule	looks	very	specific	because	it	fits	perfectly	into	a	small	number	of
observations;	we'll	improve	it	in	the	following	chapter.



Using	Rattle	to	score	new	loan	applications
As	we've	explained	before,	we	will	call	scores	to	the	process	of	predicting	the
output	for	new	examples.	We've	two	options	to	score	new	observations	with	our
Decision	Tree;	we	can	code	the	Decision	Tree	rules	in	Qlik	Sense	or	we	can	use
Rattle	to	automatically	score	new	observations.

As	you	have	seen	before,	the	rules	are	easy	to	translate	to	an	If	then	structure	that
is	easy	to	implement	in	any	language.	Imagine	Rattle	provides	you	with	a	set	of
10	rules	and	the	first	rule	is	as	follows:

	

In	the	following	screenshot,	we	see	how	we	can	create	a	new	attribute	called
Prediction.	In	this	example,	we	will	just	see	the	implementation	of	the	rule	109
using	the	Qlik	Sense	Data	load	editor,	but	we	can	use	the	If	then	structures	to
implement	all	the	rules,	as	shown	here:

	



Now,	we	have	a	new	attribute	in	our	table	called	Prediction	that	gives	us	a
prediction	for	the	credit	risk.

Rattle	provides	us	an	option	to	automatically	score	new	observations.	Using	this
option,	we	don't	need	to	manually	code	the	rules;	for	this	reason,	we	will	use
Rattle	to	score	new	credit	applications	in	this	example.

In	the	Rattle's	Evaluate	tab,	there	are	different	types	of	evaluation.	In	this
section,	we	will	use	Score,	as	shown	in	the	following	screenshot.	Under	the	type
of	evaluation,	there	is	the	model	we	will	use.	In	our	example,	we've	only	built	a
Tree	model,	for	this	reason,	we	will	choose	Tree.

Under	the	model,	we	must	choose	the	data	we	want	to	score.	The	two	most	usual
options	are	Testing	and	CSV	File.	We	can	score	new	observations	contained	in	a
CSV	file	by	selecting	the	CSV	File	option.	In	our	example,	we	will	use	the
Testing	option	to	score	the	testing:

	

Finally,	we	have	to	choose	the	type	of	report	we	want	to	create.	Choose	Class
and	a	category	will	be	created	for	each	observation.	In	the	Include	option,
choose	All	to	include	all	variables	in	the	report.	Press	the	Execute	button	and
Rattle	will	create	a	CSV	file	with	all	original	variables	and	a	new	one	called
rpart,	as	shown	in	this	screenshot:

	



Now,	we	have	a	file	containing	all	the	variables	of	the	testing	dataset	and	a
prediction	for	each	observation.	In	the	next	section,	we	will	use	Qlik	Sense	to
create	a	visual	application	for	the	business	user.	With	this	application,	the
business	users	will	be	able	to	access	new	applications	information.



Creating	a	Qlik	Sense	application	to	predict
credit	risks
In	the	previous	section,	we've	created	a	Decision	Tree	using	Rattle	and	we've
scored	the	testing	dataset	using	the	model	we	created.	In	this	section,	we'll	use
Qlik	Sense	to	build	a	visual	application	to	explore	new	loan	applications.

The	German	Credit	dataset	contains	two	different	types	of	input	variables,
numeric,	and	categorical.	In	a	categorical	variable	such	as	Purpose,	each
observation	contains	a	value,	and	possible	values	for	Purpose	are	A40,	A41,	A42,
A43,	A44,	and	A45.	Each	value	has	meaning,	for	example	A40	means	a	new	car.	In
order	to	help	the	user	to	understand	and	explore	the	data,	we	want	to	translate	all
categorical	values	to	its	meaning.	Like	in	Chapter	4,	Creating	Your	First	Qlik
Sense	Application,	we'll	add	a	description	in	separate	tables	and	we'll	build	a
data	model,	such	as	the	following	screenshot:

	

Remember	that	to	link	two	tables,	Qlik	Sense	needs	two	fields	with	exactly	the



same	names.

Now,	we	need	to	create	a	table	for	each	categorical	variable	containing	the
original	value	and	its	translation.	For	the	variable	Purpose,	we'll	create	a	table
like	the	following:

	

Use	a	spreadsheet	tool	such	as	Microsoft	Excel,	to	create	a	file	that	contains	a
sheet	for	each	categorical	variable.

Now,	we've	two	files	with	one	file	containing	the	scored	testing	dataset,	and	a
file	with	all	the	descriptions	for	the	categorical	variables.

You've	learned	in	Chapter	4,	Creating	Your	First	Qlik	Sense	Application,	about
how	to	load	data	into	Qlik	Sense.	In	this	example,	we	have	a	file	with	14	sheets
or	tables.	If	you	want	to	load	all	sheets,	you	can	select	all	sheets	in	the	data	load
wizard,	like	in	the	following	screenshot:



	

After	loading	the	data,	we	create	a	visual	application	for	the	business	user.
You've	learned	in	Chapter	4,	Creating	Your	First	Qlik	Sense	Application,	and,
Chapter	5,	Clustering	and	Other	Unsupervised	Learning	Methods,	on	how	to
create	this	application.	One	benefit	of	Qlik	Sense	is	that	it	gives	self-service	data
visualization;	it	means	that	each	user	can	create	his	own	charts	depending	on	his
interests.	You	can	create	the	application	you	want;	as	an	example,	we've	created
an	application	with	two	sheets.	The	first	sheet	is	an	overview	and	the	second
sheet	contains	a	table	to	see	all	the	details	of	new	applications,	as	shown	in	the
following	screenshot:



	



Ensemble	classifiers
Thomas	G	Dietterich	defines	Ensemble	methods	as	follows:

"Ensemble	methods	are	learning	algorithms	that	construct	a	set	of
classifiers	and	then	classify	new	data	points	by	taking	a	(weighted)	vote	of
their	prediction."

You	can	get	more	information	from
http://web.engr.oregonstate.edu/~tgd/publications/mcs-ensembles.pdf.

Ensemble	methods	create	a	set	of	weak	classifiers	and	combine	them	into	a
strong	classifier.	A	weak	classifier	is	a	classifier	that	performs	slightly	better
than	a	classifier	that	randomly	guesses	the	prediction.	Rattle	offers	two	types	of
ensemble	models:	Random	Forest	and	Boosting.

http://web.engr.oregonstate.edu/~tgd/publications/mcs-ensembles.pdf


Boosting
Boosting	is	an	ensemble	method,	so	it	creates	a	set	of	different	classifiers.
Imagine	that	you	have	m	classifiers,	we	can	define	a	classifier	x	as:

	

When	we	need	to	evaluate	a	new	observation,	we	can	calculate	the	average	of	all
m	tree's	predictions	using	the	following	formula:

	

We	can	improve	this	evaluation	by	adding	a	weight	to	each	tree,	as	shown	here
in	this	formula:

	

We	can	use	this	mechanism	for	Regression	and	also	for	classification	(for
example,	if	the	result	is	higher	or	equal	to	one,	the	observation	belongs	to	class
X).	For	classification,	we	can	also	use	other	mechanisms	such	as	the	majority	of
vote.

Now,	we	know	to	ensemble	a	set	of	classifiers,	but	we	need	to	create	this	set	of
classifiers.	To	create	different	classifiers,	we	will	use	different	subsets	of	data.

The	most	usual	boosting	algorithm	is	AdaBoost	or	adaptive	boosting.	This
algorithm	was	created	by	Yoav	Freund	and	Robert	Schapire	in	1997.	In
AdaBoost,	we	start	by	assigning	equal	weights	to	all	observations.	To	create	the



first	tree,	we	will	select	a	random	set	of	observations.	After	creating	and
evaluating	the	model,	we	will	increase	the	weight	of	misclassified	observations
in	order	to	boost	misclassified	observations.	Now,	we	can	create	the	second
leaner	or	model	by	selecting	a	new	random	set	of	observations.	After	creating
each	leaner,	we	will	increase	the	weight	of	misclassified	observations.

To	create	a	boosting	model,	you	have	to	go	to	Rattle's	Model	tab	and	select	the
Boost	type,	as	shown	in	the	following	screenshot:

	

Rattle	offers	different	options,	the	most	important	ones	are:

Number	of	Trees:	This	is	the	number	of	different	trees	the	algorithm	will
ensemble
Max	Depth:	This	is	the	maximum	depth	of	the	final	tree
Min	Split:	In	the	Tree	option,	this	is	the	minimum	number	of	observations
needed	to	create	a	new	branch
Complexity:	In	the	Tree	option,	this	parameter	controls	the	minimum	gain
in	terms	of	complexity	needed	to	create	a	new	branch

In	an	ensemble	algorithm,	Out-Of-Bag	Error	or	OOB	Error	is	a	good	approach
to	performance.	OOBs	are	observations	that	are	not	in	the	subset	used	to	create
each	tree.	Rattle	uses	all	observations	that	aren't	in	the	subset	used	to	create	the
trees	to	validate	the	model.	When	we	see	an	OOB	Error	of	0.123,	it	means	that
our	model	correctly	classifies	87.7	percent	of	the	observation	that	wasn't	in	the
random	training	set.

When	we	execute	the	Boost	model,	Rattle	returns	information	in	text	form.	See
highlighted	in	the	following	screenshot,	the	Out-of-Bag	Error	and	iteration
values.	In	our	example,	the	iteration	is	46.	We	ran	the	example	with	the	variable



Number	of	Trees	set	to	46;	a	iteration	of	46	and	OOB	error	0.123	means	that
with	46	trees,	we	can	achieve	a	OOB	error	of	0.123.	If	we	increase	the	Number
of	Trees	value	to	50,	we	won't	be	able	to	achieve	a	better	OOB	Error,	as	shown
here:

	

If	you	press	the	button;	Errors,	Rattle	will	plot	the	OOB	Error,	and	you	will	see
how	it	evolves	when	you	add	more	trees	to	the	model.

Finally,	we've	created	a	set	of	trees;	we	can	see	each	tree	in	the	text	format	or	as
a	plot	by	pushing	the	List	or	Draw	button	and	select	the	number	of	trees	in	the
text	field,	as	shown	here:

	



Random	Forest
Random	Forest	is	an	ensemble	method	developed	by	Leo	Breiman	and	Adele
Cutler	in	2001.	This	is	an	ensemble	algorithm,	so	we	don't	have	a	single	tree,
we've	a	set	of	trees	or	a	forest.	Random	Forest	combines	this	set	of	trees	in	a
single	model	to	improve	the	performance.

The	main	idea	is	to	produce	a	set	of	trees,	introducing	some	randomness	in	each
tree,	and	combine	all	of	them	to	produce	a	better	prediction.	The	randomness	is
produced	in	two	different	ways;	in	the	set	of	variables	used	to	split	the	data	in
branches,	and	in	the	observations	used	to	create	(train)	the	tree.

The	basic	algorithm,	is	the	same	as	we've	already	seen	in	this	chapter,	but	now
we	will	create	a	fixed	number	of	trees.	We	need	to	decide	the	Number	of	Trees
value	and	Rattle	will	create	this	many	number	of	trees	for	us.	Before	it	creates	a
tree,	it	randomly	selects	a	set	of	observations	to	train	the	classifier	and	uses	a
randomly	chosen	subset	of	input	variables	to	split	the	data.	The	final	result	is	a
set	of	trees.

In	order	to	predict	a	new	observation,	Random	Forest	evaluates	the	new
observations	for	each	tree.	If	the	target	attribute	is	categorical	(classification),
Random	Forest	will	choose	the	most	frequent	as	its	prediction.	If	the	target
variable	is	numerical	(Regression),	the	average	of	all	predictions	will	be	chosen.

To	create	a	Random	Forest	model	in	Rattle,	you	have	to	load	a	dataset,	go	to	the
Model	tab,	and	choose	Forest	as	the	model	type,	as	shown	here:	

	

After	selecting	Forest	as	the	model	type,	press	the	Execute	button	to	create	the
model.	After	executing	Random	Forest,	Rattle	creates	a	summary.	The	summary
contains	the	following:



The	number	of	observations	used	to	train	the	model
Whether	the	model	includes	observations	with	missing	values
The	type	of	trees—Classification	or	Regression
The	number	of	trees	created
The	number	of	variables	used	at	each	split
The	OOB	estimate	of	the	error	rate
The	confusion	matrix

We'll	see	the	confusion	matrix	in	the	next	chapter.	Now,	we	have	to	see	the	OOB
estimate	of	the	error	rate.	In	the	following	screenshot,	we	will	see	23	percent	as
the	OOB	estimate	of	error	rate.	This	rate	is	high,	and	means	our	model	has	low
performance,	as	indicated	in	this	screenshot:	

	

Rattle	offers	you	some	options	to	improve	the	model.	You	can	choose	Number
of	Trees	that	the	model	will	create	and	Number	of	Variables;	in	between,	Rattle
will	choose	one	to	split	the	dataset.	We	can	use	the	Impute	checkbox	to	control
whether	observations	with	missing	values	are	ignored	or	not.

We've	four	buttons:	Importance,	Rules,	Errors	and	OOB	ROC.	You've	seen
before	that	by	pressing	the	Rules	button,	Rattle	converts	a	tree	to	a	set	of	rules.
In	this	case,	we	have	a	set	of	trees.	For	this	reason,	we've	a	text	field	where	we
can	indicate	the	number	of	trees.	If	we	write	three	in	the	text	field	and	press
Rules,	Rattle	will	convert	the	tree	number	three,	to	a	set	of	rules.



The	Importance	button	creates	a	plot	that	shows	two	measures	of	the	variable
importance	prediction	accuracy	and	Gini	index.	The	Gini	index	is	a	measure	of
the	inequality	of	a	distribution.	These	two	measures	help	us	to	understand	which
variables	are	more	useful	for	predicting	a	new	observation.

There	is	a	trade-off	between	the	error	rate	and	the	time	needed	to	create	the
model.	If	we	choose	to	create	a	small	number	of	trees,	Rattle	will	need	a	small
amount	of	time	to	create	it,	but	the	error	rate	will	be	high.	If	we	choose	creating
a	large	number	of	trees,	the	time	needed	will	be	higher,	but	the	error	rate	will	be
lower.	A	good	tool	to	choose	the	number	of	trees	is	the	error	plot.	Press	the
Error	button	and	Rattle	will	create	an	error	plot.	This	plot	shows	us	the
evolution	of	the	OOB	estimate	of	error	rate	when	you	increase	the	number	of
trees.	Look	at	the	following	screenshot;	when	the	number	of	trees	is	small,	the
error	rate	is	high;	by	incrementing	the	number	of	trees,	we	will	decrease	the
error	rate.	In	the	same	plot,	we	can	see	the	error	rate	associated	with	each
prediction:	

	

Finally,	Sample	Size	can	be	used	to	limit	the	number	of	observations	necessary
to	create	each	tree,	or	in	a	classifier,	can	be	used	to	define	the	number	of
observations	of	each	class	that	will	be	used.	In	our	credit	example,	we've	1,000
observations;	700	are	classified	as	1,	and	300	are	classified	as	2.	On	average,	the



number	of	observations	classified	as	1	in	each	sample	dataset	will	be	70	percent.
We	can	use	Sample	Size	to	create	a	different	distribution.	If	you	use	200,200	as
the	Sample	Size	value,	each	sample	dataset	will	contain	200	observations
classified	as	1	and	200	as	2.



Supported	Vector	Machines
Supported	Vector	Machine	(SVM)	is	a	supervised	method	used	for
Classification	and	Regression.	SVM	looks	for	the	best	separation	between
observations	that	belong	to	different	classes.	The	best	separation	is	the	one	with
the	higher	margin.	In	the	following	diagram,	you	can	see	a	dataset	with	two
classes	of	observations:	stars	and	circles.	On	the	left-hand	side,	the	observations
are	divided	by	a	line	called	Line	1.	On	the	right-hand	side,	there	is	the	same
dataset	divided	by	a	line	called	Line	2:	

	

In	this	example,	our	dataset	only	has	two	attributes	and	can	be	represented	in	a
plane	and	divided	by	a	simple	line,	but	usually	our	datasets	are	more	complex
and	have	a	lot	of	attributes.	We	need	to	use	a	hyperplane	to	divide	them.

Usually,	different	classes	in	a	dataset	are	not	easily	separable	as	on	our	previous
example.	For	this	reason,	Kernel	Functions	are	used	to	preprocess	the	attributes
of	the	observations	to	convert	into	easier	separable	observations.	The
performance	of	the	model	depends	on	the	Kernel	Function	used.



Other	models
In	this	section,	we	will	see	other	models	provided	by	Rattle	in	the	Model	tab,
which	aren't	supervised	learning.	These	methods	are	Linear	and	Logistic
Regression,	Neural	Networks,	and	Survival	Analysis.



Linear	and	Logistic	Regression
Linear	Regression	is	a	statistical	method	to	describe	the	relationship	between
one	or	more	input	variables	and	one	or	more	output	variables.	The	objective	is	to
create	a	formula	that	models	the	relationships	between	input	and	output
variables;	in	this	way,	we	can	use	this	formula	to	predict	new	observations.

Imagine	you	are	the	manager	of	a	marina,	your	marina	has	a	gas	station	and	you
need	to	predict	the	amount	of	gas	oil	you	will	sell	during	a	summer	day.	On	the
Mediterranean	coast,	during	the	summer,	the	amount	of	gas	oil	sold	is	correlated
to	the	temperature.	The	reason	is	obvious,	on	sunny	days,	the	temperature	rises
and	more	tourists	want	to	use	their	boats.	The	example	is	illustrated	in	this
diagram:	

	

Based	on	past	experience,	we	know	that	on	a	day	with	a	temperature	of	26ºC,	the
gas	station	sold	3,000	liters,	and	on	a	28ºC	day,	it	sold	4,500	liters.	In	this
example,	we	can	assume	that	the	relationship	between	Gas	oil	Sold	and
Temperature	is	described	by	this	equation:	



	

This	equation	describes	the	relationship	between	Gas	oil	Sold	and	Temperature.
Using	this	equation	and	a	weather	forecast,	we	can	predict	the	gas	oil	our	gas
station	will	sell	tomorrow.

When	our	dataset	has	one	output	variable,	we	will	call	it	Simple	Linear
Regression.	If	we	have	more	than	one	output	variable,	we	call	it	Multiple
Linear	Regression.

We	use	Linear	Regression	when	the	target	variable	is	numerical.	In	classification
tasks,	when	the	target	variable	is	categorical,	we	will	use	Logistic	Regression.
When	the	target	variable	has	two	possible	values	or	classes,	we	can	use	binary	or
binomial	Logistic	Regression.



Neural	Networks
The	Neural	Network	model	is	a	method	that	can	be	used	as	supervised	or
unsupervised	learning.	Neural	Networks	are	especially	useful	for	pattern
recognition	and	time	series	prediction;	real-world	applications	include	facial
recognition,	character	recognition,	or	stock	prices.

Neural	Networks	are	inspired	by	the	human	brain	and	have	three	main	layers:

Input	Layer:	This	layer	receives	the	input	data	and	passes	them	to	the
hidden	layer.
Hidden	Layer:	This	layer	contains	a	number	of	interconnected	nodes.
These	nodes,	called	neurons,	are	mathematical	functions	that	create	the
predictions.
Output	Layer:	This	layer	creates	the	final	prediction	from	the	predictions
done	in	the	hidden	layer.

Neural	Networks	work	especially	well,	when	the	number	of	input	or	attributes	in
the	observations	is	high.	An	important	disadvantage	of	Neural	Networks	is	that
the	Hidden	Layer	is	a	black	box	and	the	algorithm	doesn't	explain	the	value	of
the	prediction.



Further	learning
You	can	find	a	great	introduction	to	Data	Science	in	Introduction	to	Data
Science,	a	very	interesting	Coursera	course.	The	instructor	is	Bill	Howe,	Director
of	Research	Scalable	Data	Analytics	at	the	University	of	Washington.	You	can
find	more	details	from	the	following	location:

https://www.coursera.org/course/datasci

The	course	has	a	very	interesting	section	about	Machine	Learning.	In	this
section,	you	will	find	a	very	intuitive	introduction	to	entropy,	information	gain,
and	Decision	Tree	Learning.

In	the	last	chapter,	we've	referenced	Machine	Learning	with	R,	Brett	Lantz,
Packt	Publishing.	In	this	book,	you	can	find	a	section	about	Decision	Trees	and
the	author	develops	an	example	using	the	German	Credit	dataset.

https://www.coursera.org/course/datasci


Summary
In	this	chapter,	we've	seen	the	concept	of	entropy	and	information	gain.	We've
learned	to	create	a	Decision	Tree	with	these	concepts.	After	this,	we've	used
Rattle	to	create	a	model	to	predict	credit	risk.	We've	translated	our	tree	to	rules,
and	seen	how	to	code	them	in	Qlik	Sense.

After	Decision	Trees,	we	saw	how	ensemble	models	combine	a	set	of	learners	to
create	a	better	model.	We've	focused	on	two	ensemble	models:	Random	Forest
and	Boosting.

Then,	we've	introduced	Supported	Vector	Machines,	and	finally,	we've	covered
other	methods	such	as	Regression	and	Neural	Networks.

During	this	entire	chapter,	we	didn't	worry	about	the	model	performance,	we	just
created	the	models.	However,	we	avoided	looking	at	the	prediction	accuracy	of
all	these	different	models.	In	the	next	chapter,	we'll	learn	how	to	compare	the
performance	of	different	models	and	see	how	to	optimize	a	model.

In	real	life,	model	creation	and	optimization	are	iterative	processes.	You	can
create	a	model	and	evaluate	its	performance.	Then,	you	have	to	test	different
model	parameters,	evaluate	the	performance	again,	and	compare	the	new
performance	with	your	previous	performance.	In	this	book,	model	creation	and
optimization	are	split	into	different	chapters	for	simplicity.



Chapter	7.	Model	Evaluation
In	the	previous	chapter,	we've	seen	how	to	create	supervised	learning	methods.
We	divided	our	datasets	into	three	subsets—training,	validation,	and	testing.
We	also	used	the	training	dataset	to	train	our	models,	and	in	this	chapter,	we'll
use	the	validation	dataset	to	measure	the	model	performance	and	to	compare
different	models.

In	this	chapter,	we'll	explore	different	methods	for	measuring	the	predictive
power	of	a	model.

As	we've	seen	before,	there	are	two	kinds	of	predictive	models:	regression	and
classification.	In	a	regression	model,	the	output	variable	is	a	numeric	variable;	in
a	classification	model,	the	output	variable	is	a	categorical	variable.	We'll	start
this	chapter	with	cross-validation.	After	this,	we'll	measure	the	performance	in
regression	methods,	and	then,	we'll	move	on	to	classification	performance.



Cross-validation
Cross-validation	is	a	very	useful	technique	to	evaluate	the	performance	of	a
supervised	method.	We	will	randomly	split	our	dataset	into	k	sub-datasets	called
folds	(usually,	5	to	10).	We	will	choose	a	fold	for	testing	and	keep	the	rest	for
training.	We	will	train	the	model	using	the	other	k-1	folds	and	test	it	with	a	fold.
We	will	repeat	this	process	of	training	and	testing	k	times,	each	time	keeping	a
different	folder	for	testing.

In	each	iteration,	we	will	create	a	model	and	obtain	a	performance	measure	such
as	accuracy.	When	we've	finished,	we	have	k	measures	of	performance,	and	we
can	obtain	the	performance	of	the	modeling	technique	by	calculating	the
average.

Using	Rattle,	we	can	split	the	original	dataset	into	training,	validation,	and
testing.	Some	R	packages	implement	cross-validation	when	creating	the	model.
If	the	model	we	are	creating,	uses	cross-validation,	we	can	skip	the	creation	of
the	validation	dataset	and	only	create	the	training	and	testing	datasets.

When	we	build	a	tree,	such	as	in	the	previous	chapter,	Rattle	uses	the	RPART
package.	This	package	implements	cross-validation.	For	this	reason,	after
building	the	model,	the	last	information	that	Rattle	gives	us	is	the	complexity

table,	which	is	shown	here:	

	

In	the	complexity	table,	we	can	see	the	Complexity	Parameter	(CP)	that	we've
discussed	in	the	previous	chapter,	the	number	of	splits	(nsplit),	the	error	in	the
training	set	(error),	and	the	cross-validated	error	(xerror).	Notice	that	by



incrementing	the	number	of	splits,	we	will	reduce	the	error	on	the	training
dataset	very	fast,	but	we're	not	interested	in	that	because	a	low	error	in	the
training	dataset	doesn't	assure	a	low	error	with	the	new	observation.	We	want	to
reduce	the	cross-validated	error.	We	can	see	that	on	row	3	with	6	folds,	we've	the
lowest	cross-validated	error;	after	row	3,	the	error	increases.	For	this	reason,
Rattle	stops	splitting	the	dataset.



Regression	performance
To	measure	the	performance	of	a	regression,	the	distance	between	the	predicted
outputs	and	the	actual	outputs,	is	a	good	model	performance	measure.

Rattle	offers	us	a	good	way	to	see	predicted	values	versus	the	actual	value—the
Predicted	versus	Observed	plot.	To	test	this	plot,	you	need	to	create	a	regression
model.	You	can	download	a	sample	dataset	from	the	UCI	Machine	Learning
Repository	(http://archive.ics.uci.edu/ml;	Irvine,	CA:	University	of	California,
School	of	Information	and	Computer	Science),	or	from	Kaggle
(http://www.kaggle.com/).	On	some	websites,	such	as	the	UCI	Machine
Learning	Repository,	the	datasets	are	classified	by	the	task	you	want	to	perform
with	the	dataset.

http://archive.ics.uci.edu/ml
http://www.kaggle.com/


Predicted	versus	Observed	Plot
Imagine	we	have	to	create	a	model	to	predict	the	price	of	a	house.	Click	on	the
Evaluate	tab:	

	

Rattle's	Evaluate	tab	offers	us	two	good	options	for	a	regression	model	as
shown	in	the	preceding	screenshot:

Predicted	versus	Observed	Plot:	We	will	use	this	option	to	compare
predicted	values	versus	actual	values.
Score:	As	we've	seen	before,	this	option	creates	predictions	for	the	selected
dataset:

After	creating	the	model,	go	to	the	Evaluate	tab,	select	your	Model,	the
Validation	dataset,	the	Pr	v	Ob	option,	press	Execute,	and	Rattle	will	build	a
Predicted	vs.	Observed	plot	for	you,	as	shown	here:	



	

This	plot	shows	a	set	of	points;	each	point	is	an	observation	in	the	y	axes,	where
we	can	see	the	predicted	value,	and	in	the	x	axes,	we	can	see	the	actual	value.
We	can	also	see	a	dotted	line;	this	line	represents	a	perfect	prediction,	when
predicted	values	are	the	same	as	the	actual	values.	The	last	line	is	a	linear	fit	to
points.

Finally,	Pseudo	R-square	is	an	approach	to	R-square.	This	measures	the
variance	explained	by	the	model.	R-square	is	a	number	from	0	to	1;	an	R-square
close	to	1	means	that	the	model	has	strong	predictive	power.	When	the	model
doesn't	provide	a	good	prediction,	R-square	is	close	to	0.	In	the	same	way,	a
Pseudo	R-square	close	to	1	is	good;	a	measure	close	to	0	means	low
performance.



Measuring	the	performance	of
classifiers
In	this	section,	we'll	see	how	to	measure	the	performance	of	a	classifier.	In	the
example	we	saw	in	the	previous	chapter,	a	Decision	Tree	can	predict	that	a	new
customer	will	not	default,	but	actually	he/she	does	default.	We	need	a
mechanism	to	evaluate	the	error	rate	of	a	decision	tree;	this	mechanism	is	the
confusion	matrix	or	the	error	matrix.



Confusion	matrix,	accuracy,	sensitivity,	and
specificity
Coming	back	to	our	loan	example,	imagine	you	have	classified	1000	loans	using
a	Decision	Tree.	For	each	loan,	our	classifier	has	added	a	label	with	the	value	yes
or	no,	depending	upon	whether	the	algorithm	predicts	that	the	customer	will
default	or	not.	In	order	to	generalize,	we	will	use	the	terms	positive	or	negative
classification.	In	our	loans	example,	we	have	a	positive	classified	observation
when	our	classifier	predicted	that	a	customer	will	default,	so	the	value	of	the
Default?	Attribute	is	Yes.

In	this	scenario,	there	are	four	types	of	predictions,	listed	as	follows:

True	Positive:	The	observation	has	been	correctly	classified	as	positive.	In
our	example,	the	classifier	predicts	that	the	customer	will	default	and	the
customer	defaults.
False	Positive:	The	observation	has	been	incorrectly	classified	as	positive.
In	our	example,	the	classifier	predicts	that	the	customer	will	default	but	the
customer	doesn't	default.
True	Negative:	The	observation	has	been	correctly	classified	as	negative.
In	our	example,	the	classifier	predicts	that	the	customer	will	not	default	and
the	customer	doesn't	default.
False	Negative:	The	observation	has	been	incorrectly	classified	as	negative.
In	our	example,	the	classifier	predicts	that	the	customer	will	not	default	but
the	customer	defaults.

We	will	call	this	classification;	the	confusion	matrix;	or	the	error	matrix	because
we	represent	it	using	a	matrix,	and	this,	gives	us	an	idea	of	the	prediction	error.
The	following	diagram	illustrates	the	confusion	matrix:	



	

As	you	can	see	in	the	matrix,	True	Positives	and	True	Negatives	are	correctly
classified	by	the	algorithm,	whereas	False	Positives	and	False	Negatives	are
incorrectly	classified.	In	order	to	evaluate	the	performance	of	the	classifier,	the
first	measure	is	the	accuracy.	To	calculate	the	accuracy,	we	will	divide	the	total
correctly	classified	observations	by	all	the	observations:	

	

The	accuracy	is	a	number	between	0	and	1.	If	the	accuracy	is	0,	it	means	that	the
classifier	has	failed	in	all	the	predictions;	if	the	accuracy	is	1,	it	means	that	the
classifier	has	classified	correctly,	all	the	observations.	When	the	accuracy	is
close	to	one,	the	performance	of	the	classifier	is	good,	and	when	the	accuracy	is
close	to	zero,	the	performance	is	bad.	If	you	use	a	model	that	randomly	guesses
whether	a	credit	is	classified	as	bad	or	good	risk	(binary	classification),	the
accuracy	should	be	0.5.



In	the	following	diagram,	are	the	results	of	two	classifiers,	Classifier	A	and
Classifier	B,	both	having	1000	observations,	but	the	Accuracy	value	is	very
different.	In	the	following	example,	the	performance	of	Classifier	A	is	better
than	the	performance	of	Classifier	B:	

	

There	is	no	rule	for	whether	an	accuracy	rate	is	good	or	not,	because	it	depends
on	the	problem	that	you	are	solving.	In	order	to	know	if	your	model	has	good
performance,	you	have	to	compare	with	another	model.	The	first	step	can	be	to
compare	the	performance	of	your	model	against	a	random	classifier	or	a	simple
classifier	as	baseline.	Imagine	that	by	exploring	your	data,	you	have	discovered
that	young	people	have	a	greater	probability	of	defaulting	than	older	people.	You
can	create	a	naive	classifier	that	predicts	Default?=Yes	for	young	people	and
Default?=No	for	older	people.	If	your	assumption	is	true,	the	accuracy	of	your
naive	classifier	will	be	greater	than	0.5	(random	classifier);	maybe	0.6	or	0.7.
You	can	use	the	performance	of	this	naive	model	as	the	baseline	to	measure	the
performance	of	your	model.

The	opposite	measure	is	the	error	rate—the	percentage	of	observations
misclassified.

Accuracy	and	error	rate	are	good	measures	towards	understanding	the



performance	of	a	classifier,	but	keep	in	mind	that	they	do	not	distinguish
between	the	types	of	errors.	Imagine	you	have	developed	a	classifier	that
classifies	tumor	images	between	malignant	and	benignant.	A	false	positive	is	a
tumor	classified	as	malignant,	but	that	actually	benign.	If	you	have	a	false
positive,	then	probably	the	doctor	will	ask	for	additional	tests	to	confirm	the
diagnosis,	and	he	will	discover	that	the	image	was	misclassified;	but	what
happens	if	you	have	a	false	negative?	If	you	have	a	false	negative,	a	malignant
tumor	will	be	classified	as	benign.	Probably,	the	doctor	won't	ask	for	additional
tests	and	a	malignant	tumor	would	be	treated	as	a	benign	tumor.

As	you	can	see,	for	this	domain,	a	false	negative	is	more	dangerous	than	a	false
positive.	For	this	reason,	we	need	a	way	to	differentiate	between	the	kinds	of
misclassifications.

We	can	use	the	Sensitivity	or	True	Positive	Rate	to	measure	the	ability	of	a
classifier	to	correctly	classify	positive	observations:	

	

If	a	classifier	has	a	high	sensitivity,	this	means	that	when	an	observation	is
classified	as	positive,	the	probability	of	error	is	low.

In	order	to	measure	the	ability	of	a	classifier	to	correctly	classify	a	negative	case,
we	will	use	Specificity	or	True	Negative	Rate:	

	

Now,	we'll	use	the	model	that	we	built	in	the	previous	chapter	to	explore	Rattle's
confusion	matrix	options,	to	classify	the	risk	of	loan	applications	into	two
classes:	1	(good	credit	risk)	and	2	(bad	credit	risk).	Load	the	dataset	we	used	in
Chapter	6,	Decision	Trees	and	Other	Supervised	Learning	Methods,	and	create
two	different	models.	I've	created	a	decision	tree	(Minimum	Split	=	30,



Minimum	Bucket	=	20,	and	Maximum	Depth	=	10)	and	a	Random	Forest	model
(default	parameters).

Now,	go	to	Rattle's	Evaluate	tab.	You	have	three	rows	of	options.	In	the	top	row
(highlighted	in	the	following	screenshot),	you	can	choose	the	type	of	evaluation
you	want	to	perform.	Choose	Error	Matrix	(confusion	matrix).	The	middle	row
is	for	the	model	you	want	to	evaluate.	As	explained	earlier,	I've	created	two
models,	a	decision	tree	and	a	random	forest,	so	I	have	the	option	of	calculating
the	confusion	matrix	for	these	models.	In	the	following	screenshot,	you	can	see
that	I've	selected	Tree	and	Forest	because	I	want	to	compare	the	confusion
matrix	of	both	the	models.

Finally,	the	bottom	row	allows	you	to	choose	the	dataset	that	we'll	use	to
perform	the	evaluation.	By	default,	Rattle	chooses	the	Validation	dataset.
Usually,	we	use	this	dataset	to	optimize	the	model,	as	shown	in	this	screenshot:	



	

In	the	previous	screenshot,	we	can	see	the	output	of	the	Error	Matrix	option.
For	each	model,	we	can	see	the	confusion	matrix	with	the	total	number	of
observations	and	the	percentage	of	observations.	After	the	matrix,	Rattle
provides	us	with	the	error	rate	or	Overall	error.



Risk	Chart
For	binary	classification	models,	Risk	Chart,	or	Cumulative	Gain	Chart,	is	a
good	way	to	measure	model	performance.

To	obtain	a	Risk	Chart,	after	creating	a	binary	classification	model,	go	to	the
Evaluate	tab,	choose	the	Risk	type	and	the	Validation	dataset,	and	press
Execute,	as	shown	here:

	

In	the	following	screenshot,	we	can	see	a	Risk	Chart	for	our	credit	example.	In
this	example,	we've	1000	credit	applications,	700	classified	as	a	good	risk	and
300	classified	as	bad	risk.	We	have	a	risk	score	of	33	percent.	The	risk	of	giving
credit	to	an	application	classified	as	bad	risk	is	33	percent.

Imagine	we	want	to	use	our	model	to	choose	some	applications	to	inspect	before
granting	a	credit.	We	would	like	that	our	model	helps	us	to	choose	the	most	risky
applications.	The	Risk	Chart	will	explain	whether	our	model	is	appropriate	for
that	task.	The	following	screenshot	demonstrates	this:



	

In	order	to	understand	a	Risk	Chart,	we	need	to	know	two	important	concepts
—Precision	and	Recall.	In	a	classification	problem,	precision	is	the	percentage
of	positive	observations	that	are	correctly	classified	by	the	model:

	

A	model	with	a	high	recall	will	be	able	to	find	the	positive	observations	in	our
dataset;	Recall	and	Sensitivity	are	the	same.	The	formula	is	shown	here:



	

In	the	y	axes,	we	can	see	the	percentage	of	positive	observations	or
Performance	(%)	applications	classified	as	bad	risk.

In	the	x	axes,	we	can	see	the	percentage	of	observations	or	Caseload	(%):	1000
credit	applications.

In	this	plot,	the	diagonal	line	is	a	baseline,	if	we	review	credit	applications
randomly.	To	review	50	percent	of	bad	risk	applications,	we	need	to	review	50
percent	of	applications.

The	Recall	line	shows	us	how	the	model	ranks	the	applications.	If	we	review
500	applications	selected	by	the	model	(50	percent	of	the	whole	dataset),	we'll
review	approximately	84	percent	of	the	bad	risk	applications.



ROC	Curve
The	ROC	Curve	is	a	chart	that	shows	the	performance	of	a	binary	classification
model.	This	chart	plots	True	Positive	Rate	(sensitivity)	versus	the	False
Positive	Rate	of	our	model.

Imagine	that	we	want	to	develop	a	binary	classification	model	to	classify	new
loan	applications	into	high	risk	applications	and	low	risk	applications.	We	have	a
model	that	returns	the	probability	of	fraud.	We	need	to	choose	a	threshold	to	split
applications	between	low	and	high	risk.	For	example,	if	the	probability	of	fraud
is	higher	or	equal	than	0.7	we	predict	high	risk,	and	low	risk	if	the	probability	is
lower	than	0.7.	We	can	try	with	different	thresholds	and	we'll	discover	that	with
higher	thresholds,	we	obtain	lower	true	positive	rates	and	higher	false	positives
rates,	and	with	lower	thresholds,	we	will	obtain	higher	true	positive	rates	and
lower	false	positive	rates.	Obviously,	there	is	a	trade-off	between	true	positive
rate	and	false	positive	rate;	the	ROC	Curve	represents	this	trade-off	for	our
model	and	helps	us	understand	the	model	performance.

A	good	way	to	measure	the	accuracy	of	a	classifier	is	the	Area	Under	the	ROC
Curve	or	AUC.	An	area	of	1	represents	a	perfect	classifier;	an	area	of	0.5
represents	a	random	classifier.	The	ROC	Curve	of	our	model	will	be	a	number
between	0	and	1.	A	rule	of	thumb	to	understand	the	AUC	is:

1	to	0.90:	Excellent
0.90	to	0.80:	Good
0.70	to	0.80:	Correct
0.70	to	0.60:	Poor
0.60	to	0.50:	Bad

In	the	following	screenshot,	you	can	see	the	ROC	Curve	of	our	credit	risk
example.	The	diagonal	line	is	the	ROC	Curve	for	a	random	classifier,	and	we	can
use	it	as	a	baseline	to	compare	the	performance	of	our	model.	As	you	can	see	in
the	screenshot,	the	area	under	the	baseline	curve	is	0.5.	In	the	screenshot,	you
can	see	that	the	Area	Under	the	Curve	or	AUC	is	0.8:	



	



Further	learning
In	the	previous	chapter,	I	recommended	that	you	pursue	Introduction	to	Data
Science,	a	Coursera	course	by	Bill	Howe,	Director	of	Research	Scalable	Data
Analytics	at	the	University	of	Washington.	The	seventh	lecture	of	this	course	has
two	interesting	videos	on	Overfitting,	Evaluation,	and	Cross-validation.	This	is
an	introductory	course	and	the	videos	are	very	intuitive.

Also,	a	very	nice	introductory	book	is	Data	Science	for	Business	written	by
Foster	Provost	and	Tom	Fawcett,	O'Reilly	Media.	This	is	a	great	book	for	a
manager	who	needs	to	understand	data	science.	The	book	has	a	nice	chapter
about	overfitting	and	model	evaluation.



Summary
In	this	chapter,	we	saw	different	ways	of	analyzing	the	performance	of
supervised	models.	We	started	with	regression	model	evaluation	and	then	we
moved	on	to	classification	models	performance.

For	regression	models,	we	saw	that	the	difference	between	predicted	values	and
actual	values	is	the	most	important	measure.	In	this	way,	Rattle	provides	the
Predicted	versus	Observed	Plot.

We	discovered	that	in	classification,	a	false	positive	is	different	from	a	false
negative.	Based	on	this	difference,	we	can	create	a	confusion	matrix	and
evaluate	the	performance	of	a	classifier	using	different	mechanisms	such	as	a
Risk	Chart,	or	ROC	Curve.

In	this	chapter,	we've	worked	with	Rattle	because	it	provides	the	necessary	tools
to	evaluate	the	performance	of	a	model	developed	with	it.	In	the	next	chapter,
we'll	come	back	to	Qlik	Sense	to	learn	the	key	concepts	of	data	visualization	and
learn	how	to	communicate	with	data.



Chapter	8.	Visualizations,	Data
Applications,	Dashboards,	and	Data
Storytelling
In	this	chapter,	we'll	focus	on	data	visualization.	Representing	your	data	and
insights	visually	will	help	business	users	to	understand	it.	A	good	data
application	allows	the	business	user	to	explore	data,	understand	it,	and	discover
new	things.

Usually,	a	dashboard	is	a	visual	representation	of	the	most	important	Key
Performance	Indicator	(KPI)	of	a	company,	department,	or	business	process.	A
dashboard	can	be	created	on	a	sheet	of	paper,	in	a	spreadsheet,	or	with	the	help
of	a	data	visualization	tool	such	as	Qlik	Sense.

When	you	create	a	dashboard	with	Qlik	Sense,	you	create	a	live	application.	A
Qlik	Sense	application	can	take	the	form	of	a	dashboard	or	an	analytic
application.	As	you	will	see	in	this	chapter,	Qlik	Sense	allows	you	to	combine
this	dashboard,	analysis,	and	reporting	in	the	same	data	application.

In	data	visualizations;	charts,	tables	and	other	visualizations	are	the	building
blocks.	We'll	start	by	describing	the	visualizations	provided	by	Qlik	Sense	and
look	at	some	basic	rules	to	create	them.	We're	not	going	to	explain	how	to	create
a	chart	in	Qlik	Sense,	because	we	did	that	in	Chapter	4,	Creating	Your	First	Qlik
Sense	Application.

After	data	visualization,	we'll	discuss	how	to	create	a	data	application.	We'll
focus	on	the	important	features	of	Qlik	Sense	and	on	one	particular	approach	to
data	application	design.

Finally,	we'll	focus	on	data	storytelling,	a	way	to	present	your	data	and
conclusions.



Data	visualization	in	Qlik	Sense
In	Chapter	4,	Creating	Your	First	Qlik	Sense	Application,	we	saw	how	to	create
a	Qlik	Sense	application.	We	also	saw	how	to	load	data	and	how	to	create	charts.
The	objective	of	this	chapter	is	not	to	create	a	lot	of	charts.	We	are	going	to
explore,	in	detail,	a	bar	chart	to	explore	the	configuration	options	and	we'll
describe	the	charts	provided	by	Qlik	Sense	and	when	to	use	the	different	data
visualizations.	We'll	also	look	at	some	ideas	on	how	to	create	data	visualizations.



Visualization	toolbox
To	see	all	the	available	options,	open	a	Qlik	Sense	application	in	Edit	mode	and
you	will	find	all	the	options	in	the	left	hand	pane.	In	the	following	screenshot,

we	can	see	the	Charts	pane:	

Qlik	Sense	provides	the	following	default	charts:

Bar	chart:	This	is	the	simplest	chart,	it	helps	us	to	answer	questions	such	as
"Who	are	my	best	customers?"	and	"Who	are	the	top	performing
salespeople?".
Combo	chart:	In	this	chart,	you	can	combine	bars,	lines,	and	points	or



symbols.	I	like	to	use	it	to	represent	metrics	of	different	types	such	as	sales
and	margins;	you	can	use	bars	to	represent	the	amount	of	sales	and	points	to
represent	the	margin.
Filter	pane:	You	can	use	a	filter	pane	to	contain	the	most	common	filters
such	as	the	year,	month,	or	country;	in	this	way,	the	user	has	easy	access	to
the	most	common	filters.
Gauge	and	KPI:	These	charts	only	represents	a	metric	with	no	dimensions.
The	Gauge	chart	shows	the	metric	like	a	speedometer	(Radial	Gauge)	or
like	a	thermometer	(Bar	Gauge)	and	the	KPI	chart	shows	the	metric	as	a
text.	Be	careful	when	representing	a	single	metric;	if	a	dashboard	tells	us
that	the	amount	of	sales	is	€	318,000,	we	don't	know	if	the	performance	is
high	or	low.	If	you	compare	the	amount	of	sales	with	another	metric	like	the
target	or	the	last	year	sales,	this	will	add	context	to	our	metric.	In	the
following	screenshot	you	can	see	the	same	metric	as	a	Radial	Gauge,	Bar
Gauge,	and	KPI.

Line	chart:	This	chart	is	very	useful	when	showing	the	evolution	of	a
metric	over	time.
Map:	A	different	way	to	discover	patterns	in	data	is	to	visualize	data	in	a
map.	By	adding	a	location	to	your	business	data,	you	are	providing	a	new
context	that	can	help	you	to	obtain	new	insights.	In	Qlik	Sense,	there	are
two	types	of	map	polygons	or	area	maps,	as	well	as	slippy	maps	or	point
maps.
Pie	chart:	Sometimes,	we	need	to	see	how	a	metric	such	as	sales	is
distributed;	the	pie	chart	is	a	very	effective	method	to	show	distributions.
Be	careful,	if	our	dimension	has	a	lot	of	values,	this	chart	can	get	confusing.
Scatter	plot:	To	discover	if	two	quantitative	values	are	correlated	and	to
which	degree,	we	can	use	a	scatter	plot.	With	a	scatter	plot,	we	can	see	if



there	is	a	correlation	between	two	variables.
Table	and	Pivot	Table:	Tables	are	very	useful	when	studying	exact
numbers	or	details.
Text	&	image:	By	using	text	and	image	objects	we	can	combine	text,
images,	and	measures.	This	is	very	useful	in	the	main	sheet	of	a	dashboard.
Usually,	you	place	the	headlines	in	this	first	sheet,	and	you	can	use	the	font
size	and	type	to	provide	more	relevance	to	a	text	or	value.
Treemap:	A	treemap	is	a	very	useful	tool	to	represent	hierarchical	(tree-
structured)	data.	In	a	treemap,	each	branch	is	plotted	as	a	rectangle,	split	by
other	branches	or	leaves.	Finally,	each	leaf	is	plotted	as	a	rectangle,	the	size
of	this	rectangle	depends	on	the	measure's	value.	In	the	following
screenshot,	Europe	and	America	are	two	branches	and	the	countries	are
leaves:	

Extensions:	Qlik	Sense	allows	developers	to	create	Extensions,	which	are
additional	developments	that	extend	Qlik	Sense	functionality.	There	are	several
websites	where	you	can	find	extensions,	such	as	the	following:

Qlik	Community	(http://community.qlik.com/):	This	is	a	very	active
community	about	Qlik	Sense	and	Qlik	View.
Qlik	Market	(http://market.qlik.com/):	This	is	an	exchange	platform	for
useful	solutions.	There	are	three	types	of	solutions:	Connectors,
Applications,	and	Extensions.	This	site	is	a	very	useful	resource.	Some

http://community.qlik.com/
http://market.qlik.com/


extensions	are	free	and	some	of	them	are	chargeable.
Qlik	Branch	(http://branch.qlik.com/):	This	is	a	collaborative	site	for
developers	to	share	their	projects	and	extensions.	You	can	find	extensions
and	other	developments	that	add	functionalities	to	Qlik	Sense.

You	can	find	detailed	instructions	on	how	to	use	each	chart	on	YouTube.	Qlik
has	a	channel	called	Qlik	and	there	is	a	very	good	series	called	Qlik	Sense
Desktop	Tutorials.

Tip

Qlik	Sense	charts	are	Responsible	and	Smart.	The	charts	adapt	themselves	to	the
space	to	show	information	to	the	user	in	the	smartest	possible	way.	These	kinds
of	charts	are	very	useful	for	mobile	devices.	We're	using	Qlik	Desktop,	which	is
a	PC	based	tool	but,	when	using	Qlik	Sense	Enterprise,	we	can	access	and
develop	from	a	PC,	tablet,	or	smartphone	and	the	Smart	Charts	adapt	to	the
available	space.	The	ability	of	the	charts	to	adapt	to	space	is	very	important	for
mobility	purposes.	If	we	access	Qlik	Sense	with	a	browser	from	any	device,
from	a	cell	phone	to	a	desktop,	every	component	in	Qlik	Sense	is	able	to	adapt	to
the	available	display	screen	space.

http://branch.qlik.com/


Creating	a	bar	chart
A	good	visualization	or	chart	has	to	be	clear,	complete,	and	necessary.	The	user
needs	to	be	able	to	understand	the	visualization,	for	this	reason	you	have	to
remember	the	following:

Avoid	complex	charts
Include	legends	whenever	necessary
Label	axes
Include	titles,	subtitles,	and	footnotes	wherever	necessary

Each	visualization	is	a	message	and	it's	important	that	each	chart	has	a	complete
meaning	of	its	own.	Finally,	use	only	the	necessary	chart	to	avoid	hiding	the
important	ones	in	an	ocean	of	plots.

In	this	section,	we	will	use	a	simple	bar	chart	to	explore	most	of	the
configuration	options	of	a	Qlik	Sense	chart.	In	a	bar	chart,	you	have	different
values	side-by-side.	This	chart	is	very	useful	when	looking	at	the	difference
between	dimensions.	You	can	look	over	your	sales	in	the	different	regions	and	it
is	very	easy	to	compare	actual	versus	planned,	or	see	the	differences	between
regions.	You	can	use	this	chart	for	rank	analysis	or	to	show	the	top	values,	like
the	best	sales	representatives	or	the	bestselling	products.

To	create	a	bar	chart,	I've	created	a	small	dataset	with	the	final	classification	of
Liga	BBVA	2014-2015,	the	Spanish	soccer	league,	as	shown	in	the	following
screenshot:	



	

Our	objective	is	to	create	a	chart	like	the	following:	

	

This	chart	shows	us	the	final	classification,	the	number	of	points	for	each	team



and	we	used	color	to	represent	goals	against.	The	chart	tells	us	that	FC
Barcelona	won	the	league	and	Real	Madrid	was	second.	Real	Madrid	and	FC
Barcelona	were	very	close	because	the	final	number	of	points	are	very	similar.	In
general,	the	teams	with	more	goals	against,	perform	worse;	for	this	reason	the
bars	on	the	right	are	darker	than	the	bars	on	the	left.	There	are	two	exceptions:
Real	Madrid	and	Rayo	Vallecano.	Real	Madrid	have	more	goals	against	than
Atlético	de	Madrid	or	Valencia	but	have	a	better	placing;	probably	they	scored	a
lot	of	goals.	Rayo	Vallecano	have	the	same	issue	as	Real	Madrid;	they	have	a	lot
of	goals	against.	As	you	can	see,	bar	charts	are	very	simple	but	they	can	provide
a	lot	of	information.

From	the	previous	chapters,	you	know	how	to	load	data	and	how	to	create	a	bar
chart.	In	this	chart,	we	used	Team	for	the	dimension	and	Points	for	the	measure.

To	personalize	bar	charts,	we've	four	main	menus:

Data
Sorting
Add-ons
Appearance

These	menus	are	illustrated	in	the	following	screenshot:	

	

In	this	section,	we're	going	to	describe	these	four	menus;	they	are	similar	in	all
charts.

The	Data	menu



To	create	a	chart	to	represent	the	final	placing	at	the	end	of	the	season,	the	first
important	decision	is	what	to	represent	in	the	chart.	The	dimension	is	very
obvious,	we	choose	the	variable	Team.	For	measure,	there	are	different	options,
such	as	Rank,	or	Points.	If	we	use	Rank	as	the	measure,	we'll	see	the	final	rank,
but	if	we	use	Points,	we'll	see	the	final	rank	and	the	difference	in	points	between
teams.	In	this	example,	we've	used	Points	because	it	provides	us	with	more

information:	

	

From	the	previous	chapters,	you	already	know	how	to	set	Points	and	Team	as
the	measure	and	dimension.	In	this	example,	we're	going	to	focus	on	a	few



additional	settings	that	will	help	us	customize	the	chart.

In	the	Dimensions	box,	we	see	two	interesting	options,	as	follows:

The	Show	null	values	checkbox
The	Limitation	checklist

The	Show	null	values	checkbox	tells	us	what	to	do	when	the	value	of	the
dimension	is	null.	In	the	following	piece	from	the	original	dataset,	we've	deleted
the	name	of	a	football	team;	if	the	checkbox	is	checked,	Qlik	Sense	will	place	a
-	in	the	place	of	the	team	name.	If	the	checkbox	is	unchecked,	Qlik	Sense	will
draw	RC	Celta	and	RCD	Espanyol,	and	will	omit	the	ninth	team,	as	illustrated
here:	

	

This	check	is	very	useful	when	looking	for	problems	in	your	dataset.	Imagine
that	you	have	a	dataset	with	sales	transactions;	each	row	contains	product,
amount	sold,	customer,	and	salesman.	If	you	plot	a	chart	with	amount	sold	as
the	measure	and	Product,	Customer	or	Salesman	as	the	dimension,	a	value	of
amount	sold	with	-	as	label,	this	means	that,	in	the	original	dataset,	one	or	more
rows	have	missing	values	for	the	dimension;	as	happened	with	the	ninth	team	in
our	previous	example.

The	second	important	setting	in	dimensions	is	the	Limitation	listbox.	This
setting	limits	the	number	of	values	that	Qlik	Sense	plots.	There	are	four	possible
options,	as	depicted	in	the	following	table:

Limitation Illustration Description

No
limitation

	

Qlik	Sense	will	plot	all	possible	dimensions;	in	our
example	Qlik	Sense	will	plot	all	teams.



Fixed
number

	

Qlik	Sense	will	plot	a	fixed	number	of	values
(teams).	This	option	is	useful	to	create	a	Top	10
analysis.

Exact
value

	

Qlik	Sense	will	plot	only	the	Teams	that	have	a
number	of	points	that	agree	to	the	condition.

Relative
value

	

Qlik	Sense	will	plot	only	the	Teams	that	have	a
number	of	points	that	agree	to	the	condition.



An	important	setting	for	the	measure	is	Number	formatting.	By	default,	this
setting	option	is	Auto;	generally	Qlik	Sense	selects	the	best	option,	but	if	you
want	to	be	sure	how	the	numbers	are	going	to	be	formatted,	you	can	set	it
however	you	wish.	An	example	setting	is	shown	here:	

	

You	can	choose	between	these	different	Number	formatting	settings:

Auto
Number
Money
Date
Duration
Custom

For	Money,	Date	and	Duration,	Qlik	Sense	Desktop	takes	the	format	from	the
first	lines	in	Load	Script.	Qlik	Sense	Desktop	automatically	creates	these	lines
from	your	computer's	local	settings.	You	can	use	the	Custom	option	to	create
your	own	formatting	mask.

The	Sorting	menu

The	Sorting	menu	allows	us	to	personalize	how	values	are	sorted	in	our	bar



chart.	This	menu	looks	like	this:	

	

In	this	example,	we	can	sort	the	values	by	the	measure,	Points,	or	by	the
dimension,	Team.	Qlik	Sense	Desktop	chooses	the	top	variable	to	sort	the
values;	in	this	case	we	will	use	Points	to	sort	the	values.	If	two	teams	have	the
same	amount	of	points,	they	will	be	sorted	by	the	second	variable;	in	this	case,
Team.

If	we	place	Team	at	the	top	of	the	variable	list,	the	values	will	be	sorted
alphabetically	by	the	name	of	the	team.

As	you	can	see	in	the	previous	screenshot,	Qlik	Sense	Desktop	sets	the	sorting
type,	by	default,	to	Auto.	You	can	set	this	option	to	Custom	and	personalize
how	you	want	to	sort	the	values.

The	Add-ons	menu

This	menu	provides	us	with	the	personalization	options,	Data	handling	and

Reference	lines,	as	shown	in	this	screenshot:	



	

Data	Handling	has	only	one	option:	Show	zero	values.	If	this	option	is
checked,	as	shown	in	the	preceding	screenshot,	Qlik	Sense	Desktop	plots	a	team
with	zero	points.	If	we	uncheck	this	option,	Qlik	Sense	Desktop	does	not	plot	a
team	with	zero	points.

With	Reference	lines	we	can	add	horizontal	lines	to	our	bar	chart.	In	the
following	screenshot,	you	can	see	how	to	set	a	line	by	taking	the	points	average:	

	
The	Appearance	menu

The	Appearance	menu	has	five	options,	as	listed	here:

General
Presentation
Colors	and	legend
X-axis
Y-axis



This	menu	is	illustrated	in	the	following	screenshot:	

	

Under	the	General	submenu,	there	are	the	Title,	Subtitle,	and	Footnote	options.
When	you	see	an	fx	symbol	in	the	textbox,	it	means	that	you	can	use	an
expression.	We're	going	to	use	this	functionality	in	the	following	example.

In	the	Presentation	submenu,	we	can	choose	between	Vertical	and	Horizontal
orientation,	the	type	of	grid,	and	whether	we	use	the	Value	labels	switch,	to	plot
the	value	of	each	bar	in	the	bar	chart.	In	this	example,	if	you	turn	on	this	switch,
the	amount	of	points	for	each	team	will	be	plotted	in	each	bar.

The	X-axis	and	Y-axis	submenus	allow	us	to	personalize	labels	and	titles	for
each	axis.	If	the	variable	is	numeric,	such	as	Points,	we	can	also	personalize	the
axis	range.

The	Appearance	menu	is	further	illustrated	as	follows:	



	

Finally,	using	the	Colors	and	legend	submenu,	we	can	personalize	the	color	of
each	bar.	Qlik	Sense	Desktop	offers	us	four	options:

Single	color:	All	bars	have	the	same	color.
By	dimension:	Each	different	value	in	the	dimension	variable	has	a
different	color.	In	our	example,	each	team	has	a	different	color.	We	used
this	option	in	Chapter	4,	Creating	Your	First	Qlik	Sense	Application.
By	measure:	In	our	example,	Qlik	Sense	Desktop	uses	the	variable	Points
to	color	each	bar.
By	expression:	In	this	option,	we	can	use	a	new	expression	to	color	the
bars.	This	option	is	very	useful	because	it	allows	us	to	code	more
information	in	the	same	plot.	In	this	example	we	used	the	variable	Goals
Against;	in	this	way	we	discovered	that	Real	Madrid	and	Rayo	Vallecano
conceded	an	unusual	number	of	goals.	The	expression	can	return	a	number,
as	in	this	example,	or	a	color	code,	as	in	the	example	in	Chapter	5,
Clustering	and	Other	Unsupervised	Learning	Methods.



In	the	next	section,	we're	going	to	use	title	and	subtitle	expressions	to	add
information	to	our	chart.



Data	analysis,	data	applications,	and
dashboards
Before	creating	a	data	application,	you	have	to	define	who	is	going	to	use	your
application	and	what	the	objective	of	the	application	is.	Patricia	L.	Saporito,	in
Applied	Insurance	Analytics,	Pearson	Education	LTD	defines	three	main	user
groups:

Executive	management:	They	need	key	metrics,	very	visual	applications
and	should	be	able	to	access	the	analysis	from	different	devices
Middle	managers:	They	need	key	metrics	and	the	ability	to	navigate	from
aggregate	data	to	detailed	data
Analysts:	This	group	needs	to	be	able	to	manipulate	data	on	the	lowest
grain	and	create	new	metrics

You	also	need	to	be	familiar	with	the	metrics	you	are	going	to	use	in	your
application.	A	special	type	of	metric	is	a	Key	Performance	Indicator	(KPI).
KPIs	explain	the	performance	of	a	business	process	or	activity;	Sales	versus
Objective	would	be	a	good	KPI	for	a	Sales	Performance	dashboard.	As	you	can
see,	KPIs	are	metrics	that	illustrate	performance	but,	to	understand	the	reasons	of
this	performance,	we	need	intermediate	metrics;	Opportunity	Win	Rate	would	be
a	good	metric	to	help	us	to	understand	the	Sales	versus	Objective	metric.

In	this	section,	we'll	discuss	how	to	structure	data	applications	with	Qlik	Sense
Desktop.	We'll	start	by	describing	the	important	data	analysis	characteristics	of
Qlik	Sense	Desktop.	Then	we'll	focus	on	how	to	structure	a	Qlik	Sense	Desktop
application.



Qlik	Sense	data	analysis
Qlik	Sense	and	QlikView	are	different	tools.	QlikView	is	a	great	tool	for
developing	guided	analytic	applications,	and	Qlik	Sense	is	a	tool	for	self-service
visualization	and	data	analysis,	but	QlikView	and	Qlik	Sense	share	the	same
principles	in	their	analytic	engine.	Qlik	Sense	is	a	new	tool	but	its	analytic
engine	is	the	new	version	of	the	successful	QlikView	engine.	In	this	section,
we'll	review	the	most	important	characteristics	of	this	engine	and	how	these
characteristics	influence	our	analysis.

In-memory	analysis

Traditional	Business	Intelligence	(BI)	or	data	analysis	tools	access	the	data
through	a	database.	Databases	are	based	on	filesystems,	and	data	access	in	a
filesystem	is	not	fast.	For	this	reason,	traditional	BI	doesn't	provide	a	great
interactive	experience.	When	a	user	makes	a	selection,	the	BI	tool	executes	a
query	to	the	database,	the	database	then	needs	to	access	a	lot	of	rows,	sometimes
millions	of	rows	in	the	filesystem	and	aggregate	them	to	provide	the	result;	this
entire	process	is	time	consuming	and	the	user	has	to	wait	for	the	information.
The	result	is	that	the	user	perceives	a	lack	of	interactivity	and	doesn't	use	the
tool.	To	avoid	this,	BI	tools	aggregate	data	to	reduce	the	number	of	rows.	For
example,	in	a	sales	analysis	application,	the	raw	data	is	sales	tickets;	each	row	in
the	dataset	is	a	line	ticket.	If	you	aggregate	the	sales	information	by	store	and
day,	you	have	the	amount	of	sales	in	a	week	for	a	given	store.	You	have	reduced
the	number	of	rows	and	you	will	improve	your	response	time,	but	you	have	lost
information	and	your	analysis	will	be	limited.

In	order	to	provide	a	good	level	of	interactivity	and	avoid	aggregating	data,	Qlik
Sense	works	in	a	different	way	to	the	traditional	BI.	When	you	open	a	Qlik
Sense	application,	the	engine	loads	all	the	data	for	you	to	the	RAM.	This
memory	is	very	fast	and	Qlik	offers	great	performance	without	aggregating	data.
Thanks	to	its	in-memory	approach,	Qlik	Sense	is	a	very	interactive	tool	and	we
can	take	advantage	of	the	most	detailed	atomic	data.	Keeping	the	most	atomic
data	in	our	dataset	allows	us	to	develop	our	data	application	using	a	Dashboard
Analysis	and	Reporting	(DAR)	approach.

Qlik	introduced	in-memory	analysis	in	1993.	Today,	other	vendors	are
developing	in-memory	tools	to	analyze	data.	In	my	opinion,	the	QIX	Associative



Data	Indexing	Engine	makes	best	use	of	these	decades	of	experience.

Associative	experience

In	a	traditional	database	data	model,	different	tables	are	linked	together	with	pre-
declared	keys	and	the	user	only	can	explore	his/her	data	through	predefined
paths.

The	Qlik	Sense	engine	uses	a	different	approach.	In	Qlik's	engine,	all	data	is
associated,	and	the	user	can	consult	the	analytic	engine	without	any	predefined
paths.	After	installing	Qlik	Sense,	you	have	three	example	applications.	We're
going	to	use	an	example	application	to	understand	the	magic	of	associative	logic.
Open	Qlik	Sense,	open	the	Sales	Discovery	app,	and	open	the	Data	model.

The	data	model	is	organized	around	a	table	called	SalesDetails	that	contains	the
most	atomic	data	of	a	sale—price,	quantity,	discount,	product,	customer,	and	so
on.	This	table	contains	the	field	we	want	to	measure	and	we	call	it	the	fact	table:

	

Our	objective	is	to	obtain	Californian	customers	who	bought	Alcoholic
Beverages	in	January	2014.	Go	to	App	overview	and	open	any	sheet	in	the



application.	In	the	top	right	square,	click	the	squared	icon	to	open	a	filter	screen,
marked	by	the	red	arrow	in	the	following	screenshot:	

	

As	you	can	see	in	the	following	screenshot,	we	use	the	search	box	to	look	for	a
filter.	Enter	Year	in	the	search	box;	Qlik	Sense	will	give	you	the	Year	filter,
select	2014.	Repeat	this	for	Alcoholic	Beverages,	CA,	and	Jan.	Finally,	enter
customer	in	the	search	box	to	obtain	the	Customer	filter;	in	this	filter,	you	see	a
white	list	of	customers.	These	customers	are	associated	with	Jan,	2014,	CA,
Alcoholic	Beverage;	this	means	that	these	customers	have	bought	Alcoholic
Beverages	in	California.	After	this	white	list,	there	is	a	grey	list	of	customers.
These	customers	are	not	associated	with	my	selections;	this	means	that	these
customers	have	not	bought	Alcoholic	Beverages	in	January	2014	or	they	are	not
from	California:	



	

Thanks	to	the	associative	logic,	a	business	user	can	freely	explore	his/her
information	and	obtain	answers	to	his	questions.	Now	try	posing	and	answering
your	own	questions.

Note

A	lot	of	people	has	written	articles	about	the	Associative	Experience,	I	especially
like	the	one	written	by	Michael	Tarallo,	The	Associative	Experience	-	Revisited:
https://community.qlik.com/blogs/theqlikviewblog/2014/04/10/the-associative-
experience--revisited

https://community.qlik.com/blogs/theqlikviewblog/2014/04/10/the-associative-experience--revisited


Data	applications	and	dashboards
There	are	different	approaches	to	designing	data	applications.	As	we've	seen,	the
design	of	the	application	is	defined	by	the	audience,	the	business	objective,	and
the	data,	but	a	very	popular	approach	in	QlikView	and	Qlik	Sense	is	DAR.

The	DAR	approach

DAR	stands	for	Dashboard,	Analysis	and	Reporting	and	is	a	very	useful
approach	proposed	by	Qlik	to	develop	data	analysis	applications	in	Qlik	Sense.
We'll	use	the	Sales	Discovery	app	to	explain	this	concept.

In	a	DAR	application,	the	first	sheet	offers	us	the	headlines	of	our	application.
This	part	of	the	application	is	the	dashboard.	In	the	following	screenshot,	you
can	see	the	Performance	Dashboard	sheet	from	the	Sales	Discovery
application:	

	

In	the	central	area,	we	can	see	that,	during	2014,	the	company	sold	1.71%	less



than	in	the	same	period	of	2013,	the	margin	was	2.13%,	and	sales	were	8.29%
below	target.	We	can	also	see	a	bar	chart	that	explains	how	the	different	regions
are	performing.	This	sheet	is	designed	to	explain	performance	and	where	we
have	to	focus	our	attention.	Just	by	looking	at	this	sheet,	we	can	see	that	sales
performance	is	very	low	and	that	the	Central	region	is	the	one	with	the	worst
performance.

In	the	dashboard	we	focus	only	on	a	few	KPI,	as	in	the	headlines	in	a	newspaper.
Users	will	use	this	sheet	to	discover	a	performance	gap,	and	then	they'll	move	to
the	analysis	part.	In	the	same	initial	sheet,	select	the	Central	region	and	the
sheet	will	become	the	Performance	Dashboard	for	the	Central	region.	Now
you	can	see	that	sales	are	30.07%	below	budget	and	the	following	bar	chart
shows	the	performance	of	the	states	in	the	Central	region.	This	chart	tells	us	that
we	should	focus	on	Minnesota	(MN)	so	select	MN	in	the	bar	chart:	

	

Now,	to	continue	analyzing	this	low	performance	in	Minnesota,	go	to	the	Top
Customers	sheet.	You've	moved	to	a	different	sheet	but	Qlik	Sense	keeps	your
current	selection.	You	are	in	the	Top	Customers	sheet,	analyzing	data	from
Central	Region	and	Minnesota.	In	the	top	bar	of	the	screen,	you	can	see	the



filters,	as	shown	in	this	screenshot:	

	

The	Top	Customers	bar	chart	shows	the	best	customers	from	2013	and	2014.
Now	select	the	year	2013	and	then	the	year	2014	and	compare	the	Top
Customers.	You	can	see	that	the	difference	in	sales	between	2013	and	2014	is
that	Paracel	and	Renegade	info	Crew	were	the	best	customers	in	2013,	but	in
2014	they	bought	less,	as	depicted	in	the	following	screenshot:	

	

We	started	looking	at	sales	deviation	in	our	dashboard.	Then,	in	the	analysis
phase,	we	discovered	the	reasons	for	this	deviation.

Finally,	we're	going	to	enter	into	the	reporting	phase	where	we'll	obtain	the	most
granular	information	that	is	responsible	for	the	deviation.



In	this	case,	I	would	like	to	find	out	the	details	of	purchases	of	these	customers.
Select	these	customers	and	go	to	the	Transactions	sheet.	At	the	top	of	the
screenshot,	you	can	see	that	we've	selected	the	Central	region,	the	MN	state,
Paracel,	and	Renegade	info	Crew.	In	the	following	screenshot,	you	can	see	the
table	of	all	transactions	in	Minnesota	by	these	customers:	

	

As	we've	seen,	we	started	at	the	dashboard	level	where	we	saw	low	performance.
Then	we	analyzed	this	deviation	and,	finally,	we	reported	the	details	or	the
reasons	for	this	deviation.



Data	storytelling	with	Qlik	Sense
Generally,	when	you	present	your	conclusion	to	a	group	of	executives,	your
presentation	competes	for	their	time	and	attention	with	a	lot	of	different	things.
Using	your	data	to	explain	a	story	is	powerful	because	stories	have	the	following
characteristics:

Memorable
Impactful
Personal

Using	storytelling	to	present	your	data	or	insights	can	help	you	to	do	the
following:

Keep	the	interest	of	your	audience
Explain	complex	concepts
Convince	people
Make	your	presentation	memorable

There	is	a	lot	of	good	literature	around	storytelling	and	data	storytelling.	The
objective	of	this	section	is	just	present	this	Qlik	Sense	functionality	but	I	would
like	to	share	my	trick	to	prepare	presentations.	Usually,	in	our	daily	work,	we
need	to	prepare	a	presentation	within	a	limited	preparation	time.	Personally,	I	use
a	notepad	(not	a	digital	one)	and	I	write	down	my	outline	in	seven	fundamental
building	blocks:

Audience:	Everything	starts	with	the	audience.	A	presentation	for	IT	is	very
different	from	a	presentation	for	a	business	unit.	Ask	yourself,	what	are	the
concerns	of	your	audience?	Why	are	they	interested	in	your	story?
Objective:	What	is	your	objective?	Do	you	want	your	audience	to	make	a
decision?	Is	it	just	an	informative	presentation?	Having	your	objective	in
mind	is	really	important	when	creating	your	story.
Key	messages:	Time	and	attention	are	very	limited;	writing	down	your	key
messages	will	help	you	to	focus	your	story.
The	story:	Draw	your	story	and	choose	the	data	visualization	you	are	going
to	use.	Choose	the	visualizations	that	help	you	to	explain	your	story.	Are
they	relevant?	Take	time	restrictions	into	consideration.
The	link	between	the	slides	or	between	visualizations:	Links	between



slides	are	sentences	that	avoid	breaking	the	flow	of	the	story	between
slides.	Different	slides	in	a	story	can	break	the	flow	of	the	story	and	make
your	presentation	just	a	collection	of	slides.	For	this	reason,	I	prepare	every
link	between	two	slides.
Review	everything:	After	we	have	noted	down	the	preceding	building
blocks,	we	have	to	ask	ourselves	the	following	questions:

Are	the	key	messages	clearly	explained	in	the	story?
Are	you	focusing	only	on	key	messages?
Do	the	visualizations	support	the	story?
Are	the	visualizations	clear?
Does	the	story	support	the	objective	and	the	key	messages?
Is	your	story	and	its	content	suitable	for	your	audience?

Qlik	Sense	Desktop	has	a	great	tool	for	data	storytelling.	To	open	a	data	story,
click	the	Stories	button	and	choose	the	Shipment	delays	impact	story,	as	shown
in	this	screenshot:



	

As	you	can	see	in	the	following	screenshot,	press	the	Play	button	to	start	the
story:



	

The	presentation	mode	has	arrow	buttons	at	the	right	and	at	the	left,	to	go
forward	or	backward	in	your	presentation.	When	you	present	your	insights,
people	will	have	questions	about	the	data;	by	pressing	the	Go	to	sheet	button,
you	can	open	the	data	application	and	show	them	the	data,	as	illustrated	in	this
screenshot:



	



Creating	a	new	story
To	create	a	new	story,	you	need	to	take	some	snapshots	of	your	data
visualizations.	Go	to	the	application,	open	a	sheet,	and	press	the	camera	button,
marked	by	the	arrow:

	

Now	the	charts	are	in	snapshot	mode	and	the	visualizations	are	highlighted	with
a	dotted	line;	you	just	need	to	click	on	the	chart	and	Qlik	Sense	will	take	a
snapshot	that	you	will	be	able	to	use	to	create	a	story,	as	shown	here:

	

Finally,	we	have	some	data	snapshots	we	can	use	to	create	a	new	story.	We	have



to	go	to	the	top	area	of	the	screen,	press	the	stories	button,	and	press	the	Create
new	story	button:

	

Choose	a	name	for	the	story	and	start	creating	it.	To	create	your	story,	you	have
five	main	components:

Camera	Tool:	Using	this	tool,	you	can	capture	the	charts
Text:	Using	this	tool,	you	can	add	titles	or	paragraphs
Shapes:	Use	this	tool,	to	point	to	any	data
Effects:	You	can	use	this	tool	to	add	effects	to	the	charts	to	highlight	special
data
Images:	Using	this	tool,	add	images	from	the	media	library

The	following	screenshot	shows	the	five	components:



	

Now	you	can	create	a	sheet	using	these	components	just	by	dragging	and
dropping	the	components	into	the	sheet.

We've	added	a	blank	slide	and	we've	added	charts,	effects,	text,	and	images	but
we	can	also	add	live	slides	by	embedding	a	sheet	into	a	slide.	In	the	bottom	left
area,	click	the	plus	sign	to	add	a	new	slide.	There	are	three	types	of	slides:

Blank:	This	is	a	slide	like	the	one	we've	just	created
Sheet	left-aligned:	This	is	a	slide	with	a	left	aligned	embedded	sheet
Sheet:	This	is	a	slide	with	an	embedded	sheet

These	slides	are	illustrated	in	the	following	screenshot:

	

Select	Sheet	left-aligned	or	Sheet	and	choose	a	sheet	for	your	slide.	You	will
get	a	blank	sheet	into	which	you	can	drag	and	drop	components,	as	well	as
customizing	them	according	to	your	preference.	The	following	screenshot	shows
a	360	Analysis	sheet	that	has	been	customized:



	

The	Go	to	Sheet	button	and	the	inclusion	of	a	live	sheet	in	a	slide	give	the
opportunity	to	bring	your	story	to	life	and	handle	audience	questions.



Further	learning
We've	introduced	data	visualization.	If	you	are	interested	in	improving	your
knowledge	of	this	huge	topic,	Stephen	Few	and	Edward	R.	Tufte	are	probably
the	best	authors	to	consult.	Some	great	books	on	this	topic	are:

Learning	QlikView	Data	Visualization	by	Karl	Pover,	PACKT	Publishing.
This	is	a	QlikView	book	but	I	had	a	great	time	with	it	and	the	principles	are
still	valid.
Information	Dashboard	Design,	Displaying	data	for	at-a-glance
monitoring,	Stephen	Few,	Analytics	Press.
Visualize	this	The	FlowingData	Guide	to	Design,	Visualization	and
Statistics,	by	Nathan	Yau,	Wiley	Publishing,	Inc.

We've	seen	the	DAR	approach	or	Dashboard,	Analysis	and	Reporting	relating
to	the	design	of	data	applications.

To	gain	a	deeper	understanding	of	the	DAR	methodology,	have	a	look	at	a
technical	paper	on	the	Qlik	Design	Blog:
https://community.qlik.com/blogs/qlikviewdesignblog/2013/11/08/dar-
methodology

Finally,	related	to	data	storytelling,	I	found	this	book	helpful:	Strategic
Storytelling,	How	to	Create	Persuasive	Business	Presentations,	by	Dave
McKinsey,	CreateSpace	Independent	Publishing	Platform.

https://community.qlik.com/blogs/qlikviewdesignblog/2013/11/08/dar-methodology


Summary
In	this	chapter,	we've	focused	on	Qlik	Sense	and	how	to	communicate	insights
and	the	analyses	you've	made.

We	started	with	data	visualization;	we	created	a	bar	chart	and	discussed	other
charts.

After	data	visualization,	we	discussed	Qlik	Sense	functionalities	which	make	it	a
great	tool,	not	just	for	data	visualization,	but	also	for	data	analysis.	These
characteristics	are	the	in-memory	engine,	the	associative	logic,	and	the	fact	that
Qlik	Sense	doesn't	need	to	pre-aggregate	data;	in	Qlik	Sense,	you	can	load
atomic	data	in	memory	and	you	can	aggregate	at	runtime.

We've	also	seen	the	DAR	approach	or	Dashboard,	Analysis	and	Reporting	in
the	design	of	data	applications.

Finally,	we	defined	data	storytelling	and	reviewed	Qlik	Sense	data	storytelling
capabilities.

In	the	next	chapter,	we'll	create	a	data	application.	We'll	start	by	defining	the
planning	of	the	application,	exploring	the	data,	creating	our	predictions	with
Rattle,	and	finally,	we'll	create	a	data	application	using	Qlik	Sense.



Chapter	9.	Developing	a	Complete
Application
A	business	needs	to	forecast	demand	in	order	to	plan	supplies	and	resources.
Some	industries	have	been	using	predictive	analytics	to	forecast	demand	for
many	years	and,	with	today's	analytics	revolution,	a	lot	of	new	organizations	are
taking	advantage	of	these	techniques	to	do	it.

In	this	chapter,	we'll	use	a	bike	sharing	dataset	to	create	an	application	to	analyze
rental	activity,	and	after	this,	we'll	add	information	on	demand	forecasting	by
using	Linear	Regression.

We'll	divide	this	chapter	into	four	sections:

Initially,	we'll	download	and	study	our	dataset.	To	explore	the	dataset	we'll
use	Qlik	Sense.	We've	previously	used	Rattle	to	explore	our	data,	but	as	I've
mentioned,	you	can	explore	the	dataset	with	both	tools	depending	on	your
preference.	I	prefer	Qlik	Sense	for	exploration.	After	this	chapter,	you'll	be
able	to	decide	which	tool	you	prefer	for	exploration.
After	we	understand	the	data,	we'll	build	a	Qlik	Sense	application	that	will
help	users	to	explore	the	data.
After	creating	the	Qlik	Sense	application,	we'll	load	the	data	into	Rattle	to
add	demand	forecasting	information.
Finally,	we'll	add	the	forecast	information	to	our	Qlik	Sense	application.



Understanding	the	bike	rental
problem
As	in	other	examples,	we're	going	to	use	a	dataset	from	the	School	of
Information	and	Computer	Science	at	the	University	of	California.	The	dataset	is
taken	from	the	location	specified	here:

Note

Bache,	K.	and	Lichman,	M.	(2013).	UCI	Machine	Learning	Repository
[http://archive.ics.uci.edu/ml].	Irvine,	CA:	University	of	California,	School	of
Information	and	Computer	Science.

In	this	chapter,	we	will	use	the	Bike	Sharing	Dataset.	You	can	access	the
dataset	here	https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset.	This
dataset	contains	the	hourly	and	daily	count	of	rental	bikes	between	the	years	of
2011	and	2012	in	the	Washington	bikeshare	system,	with	the	corresponding
weather	and	seasonal	information.	This	dataset	was	originally	taken	from	the
location	specified	here:

Note

Fanaee-T,	Hadi,	and	Gama,	Joao,	'Event	labeling	combining	ensemble	detectors
and	background	knowledge',	Progress	in	Artificial	Intelligence	(2013):	pp.	1-15,
Springer	Berlin	Heidelberg.

Bike	sharing	systems	allow	people	to	borrow	a	bike	from	a	station	and	return	it
to	another	station	on	a	very	short	term	basis.

In	this	bike	sharing	system,	there	are	two	types	of	users—registered	and	casual.
Registered	users	are	long-term	or	mid-term	members	of	a	bike	sharing	program.
Usually,	casual	users	are	members	of	the	program	for	just	one	day.

The	objective	is	to	create	an	application	that	enables	control	of	the	activity	of	the
bike	sharing	system	and	the	following	week's	forecast	based	on	weather	and
seasonal	information.

http://archive.ics.uci.edu/ml
https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset


Applications	that	control	activity	are	useful	to	different	kinds	of	businesses.	If
you	have	information	about	the	cost	and	income	related	to	this	activity,	you	can
create	an	application	that	controls	activity,	costs,	incomes,	and	margins.	This
application	could	be	very	useful	when	optimizing	processes.

Demand	forecasting	is	very	common	in	predictive	analytics.	We	can	use
different	methods	to	forecast	the	demand	of	bike	rental,	but	we're	going	to	use
Linear	Regression.	With	this	last	example,	we	have	now	covered	three	main
techniques—K-means	for	Clustering,	Decision	Trees,	and	Linear	Regression.

We	introduced	Linear	Regression	in	Chapter	6,	Decision	Trees	and	Other
Supervised	Learning	Methods,	as	a	method	to	find	a	statistical	model	that
describes	past	data.	In	this	way,	we	can	use	the	model	to	predict	new	data.

The	dataset	contains	two	files,	day.csv	and	hour.csv.	The	first	file	contains
rental,	seasonal	and	weather	data	aggregated	by	day.	The	second	file	contains	the
same	data,	but	aggregated	by	hour:

instant:	This	is	the	recording	index
dteday:	This	is	the	date
season:	This	is	the	season	(1:	spring,	2:	summer,	3:	fall,	4:	winter)
yr:	This	is	the	year	(0:	2011,	1:2012)
mnth:	This	is	the	month	(	1	to	12)
hr:	This	is	the	hour	(0	to	23)
holiday:	This	states	whether	the	day	is	a	holiday	or	not

Source:	http://dchr.dc.gov/page/holiday-schedule
weekday:	The	day	of	the	week
workingday:	If	the	day	is	neither	a	weekend	nor	a	holiday,	then	it	is	1,
otherwise	it	is	0
weathersit:	This	provides	the	following	four	options:

1:	Clear,	Few	clouds,	Partly	cloudy
2:	Mist	+	Cloudy,	Mist	+	Broken	clouds,	Mist	+	Few	clouds,	Mist
3:	Light	Snow,	Light	Rain	+	Thunderstorm	+	Scattered	clouds,	Light
Rain	+	Scattered	clouds
4:	Heavy	Rain	+	Ice	Pallets	+	Thunderstorm	+	Mist,	Snow	+	Fog

temp:	The	normalized	temperature	in	Celsius,	the	values	are	divided	by	41
(max)

http://dchr.dc.gov/page/holiday-schedule


atemp:	The	normalized	feeling	temperature	in	Celsius,	the	values	are
divided	by	50	(max)
hum:	The	normalized	humidity,	the	values	are	divided	by	100	(max)
windspeed:	The	normalized	wind	speed,	the	values	are	divided	by	67	(max)
casual:	The	count	of	casual	users
registered:	The	count	of	registered	users
cnt:	The	count	of	total	rental	bikes,	including	both	casual	and	registered

This	dataset	has	three	dependent	variables,	casual,	registered	and	cnt;	13
independent	variables,	dteday,	season,	yr,	mnth,	hr,	holiday,	weekday,
workingday,	weathersit,	temp,	atemp,	hum	and	windspeed,	and	one	identity
variable,	instant.

If	we	can	find	the	relationship	between	the	weather	variables	and	the	number	of
users,	we'll	be	able	to	predict	the	demand	using	a	weather	forecast.

For	this	example,	we're	going	to	use	the	daily	file	and	the	dependent	variable
cnt.	We're	going	to	ignore	the	hourly	information	and	registered	and	casual
variables.

In	order	to	add	some	context	to	our	analysis,	we	will	assume	a	target	of	4,000
users	per	day.	We	have	the	same	capacity	(the	number	of	bikes)	every	day,	so	on
the	days	with	less	than	4,000	users,	we	are	wasting	our	capacity.



Exploring	the	data	with	Qlik	Sense
We've	seen	in	previous	chapters	how	to	load	data	into	Qlik	Sense	and	how	to
create	charts.	In	this	chapter,	we'll	discuss	different	charts,	but	we're	not	going	to
describe	how	to	load	the	data	and	how	to	create	charts.	In	this	section,	we	will
build	a	Qlik	Sense	application	using	the	data	contained	in	the	day.csv	file.
Before	starting	to	build	the	application,	we	will	explore	it.



Checking	for	temporal	patterns
We	can	start	creating	a	chart	to	see	the	evolution	of	the	number	of	rentals,	as
shown	in	the	following	screenshot.	We've	used	a	bar	chart	with	the	variable
dteday	as	Dimension	and	sum(cnt),	the	total	number	of	users,	as	Measure:

In	the	bar	chart,	we	usually	use	the	measure	to	order	the	bars.	If	we	use	a	bar
chart	to	see	the	sales	performance	of	different	countries,	we	will	have	to	order
based	on	the	amount	of	sales.	In	this	case,	I	will	have	to	order	the	bars	by	the
dteday	dimension.	To	ensure	I'm	using	this	variable	to	order	my	bar	chart,	I	need
to	check	the	sorting	order.	As	you	can	see	in	the	following	screenshot,	I	set
dteday	as	the	first	variable	to	sort	the	data:

	

Looking	at	the	following	chart,	we	discover	that	on	29th	October	2012,	there
was	an	unusually	low	number	of	rentals;	on	that	day	the	system	reports	only	22
rentals.	The	reason	for	this	unusual	behavior	is	that	on	29th	October	2012,	and
30th	October,	2012,	Hurricane	Sandy	hit	Washington	DC.	We'll	delete	these	two
days	from	our	dataset,	before	loading	it	into	Rattle	to	avoid	anomalies:



	

In	the	previous	chart,	we	can	also	see	that,	in	2012,	the	bike	rental	increased,
compared	to	2011.	We	can	replace	the	dimension	dteday	by	yr	to	see	the
difference	between	2011	(yr	=	0)	and	2012	(yr	=	1).	As	you	can	see	in	the
following	screenshot,	in	2011	the	number	of	users	was	1.243.103	and	in	2012
the	number	was	2.049.576:



	

In	the	next	chart,	we'll	use	the	average	number	of	rental	users	and	the	weekday
as	the	dimension	to	discover	a	behavior	pattern	for	weekdays:



	

Looking	at	the	preceding	chart,	we	can	see	that	the	day	of	the	week	has	a	weak
influence	on	the	number	of	users.	During	the	weekend,	the	average	number	of
users	is	slightly	lower.

As	you	can	see,	I've	added	the	target	to	the	chart.	You	learned	in	the	previous
chapter	how	to	add	reference	lines	to	our	charts.

In	the	following	screenshot,	you	can	see	the	relation	between	the	variables	mnth
and	season	and	the	dependent	variables	registered	and	casual:



	

As	you	can	see,	there	is	a	relationship	between	the	month	and	the	number	of
rentals.	During	the	cooler	months	of	January,	December	and	February,	demand	is
at	its	lowest	and,	during	the	warmer	months	of	July,	August	and	September,
demand	is	higher.	But,	is	it	a	linear	relationship?

A	regression	model	assumes	a	lineal	relationship	between	the	independent
variable	and	the	dependent	variable.	Usually,	the	relationship	between	the	size	of
a	house	and	its	price	is	lineal;	a	big	house	has	a	higher	price	than	a	small	house.

January	(month	1)	and	December	(month	12)	have	a	smaller	number	of
registered	users	than	July	(month	7).	The	relationship	between	the	month,
season,	and	the	dependent	variable	is	not	lineal.	We'll	transform	these	variables
later.



There	is	also	a	relationship	between	workingday,	holiday	and	the	dependent
variables.	Create	the	charts	to	check	it.



Visual	correlation	analysis
We	can	use	Rattle	for	correlation	analysis,	but	we	can	also	use	Qlik	Sense	to	do	a
very	intuitive	correlation	analysis.

Karl	Pover	wrote	a	very	interesting	chapter	on	Learning	QlikView	Data
Visualization,	Packt	Publishing,	about	how	to	use	scatter	plots	for	correlation
analysis.

Create	a	scatter	plot	using	dteday	as	the	dimension	and	temp	and	atemp	as
measures,	and	you	will	get	a	chart	similar	to	the	following	screenshot:

	

This	chart	shows	us	the	relationship	between	temperature	and	feeling
temperature.	Of	course,	there	is	a	strong	relationship	between	the	two	variables.

Now,	we	will	use	a	scatter	plot	and	a	bar	chart	to	explore	the	correlation	between
temperature,	wind	speed,	humidity,	and	the	total	number	of	users,	as	shown	in
the	following	screenshot.	We	will	start	with	the	variable	temperature:



	

The	left	chart	is	a	scatter	plot	much	like	the	previous	screenshot;	each	point	is	a
different	day,	and	we	can	clearly	see	that	there	is	a	strong	relationship	between
temperature	and	the	number	of	users.	Users	prefer	warm	days.

The	chart	on	the	right-hand	side	helps	us	to	better	understand	the	relationship
between	temperature	and	the	average	number	of	users.	The	measure	of	the	chart
is	the	average	number	of	users,	and	the	dimension	is	the	range	of	the
temperature.	To	create	this	dimension,	I	used	the	function	class,	as	shown	in
this	screenshot:

	

The	class	function	creates	the	different	ranges	and	the	second	parameter	(0.1)
is	the	width	of	every	class.

Now,	repeat	these	two	charts	for	the	variables	hum	and	windspeed.	You	will
discover	that	the	relationships	between	humidity,	wind	speed,	and	the	number	of
users	are	weaker	than	the	previously	used	variables,	as	shown	in	this	screenshot:.



	

We've	used	Qlik	Sense	to	explore	and	understand	the	data,	and	we've	discovered
that	there	is	a	strong	relationship	between	the	number	of	total	users	and	the
temperature.	During	the	warmest	months,	the	number	of	users	increases,	and
during	the	coldest	months,	the	number	of	users	decreases.	Now,	we'll	create	an
app	to	help	users	analyze	the	demand.



Creating	a	Qlik	Sense	App	to	control
the	activity
In	the	previous	chapter,	we	explored	the	DAR	approach	to	develop	Qlik	Sense
applications;	in	this	section,	we	will	use	the	same	approach.

We'll	start	with	the	dashboard.	At	the	center,	we'll	place	the	most	important
information	or	measures.	The	most	important	details	are	the	average	number	of
users	and	the	total	number	of	users;	these	KPIs	will	occupy	the	main	area	of	our
application.	The	number	of	registered	and	casual	users	is	also	important,	and
we'll	keep	space	for	them	in	the	dashboard,	as	shown	here:

	

During	our	analysis,	we	discovered	that,	in	2012,	the	number	of	users	increased,
and	that,	during	the	colder	months,	we	had	a	lack	of	activity.	I've	used	a	bar	chart
to	show	you	the	difference	between	2011	and	2012	and	the	lack	of	activity
during	the	winter.

After	the	dashboard,	you	will	need	an	analysis	sheet	to	analyze	the	months	that
have	a	lack	of	activity.	In	this	analysis	sheet,	we'll	include	charts	with	just	two
metrics—the	average	number	of	users	and	the	total	number	of	users;	we'll



combine	these	metrics	with	the	most	important	dimensions.	The	user	will	be	able
to	see	the	same	problem	from	different	points	of	view	and	make	selections	in	the
charts	to	see	the	effect	in	the	other	dimensions.

In	the	previous	section,	we	discovered	that	the	variable	that	has	a	greater
influence	on	the	activity	is	temperature.	For	this	reason,	I	decided	to	use	color	to
add	this	measure	in	all	charts.

In	the	central	row,	you	can	see	the	relationship	between	the	activity	and	the
humidity,	and	the	wind	speed	and	temperature.	Using	the	color	to	add	the
temperature	to	the	charts,	the	users	will	keep	focused	on	this	colored	variable,	as
shown	in	this	screenshot:

	

In	this	analysis	sheet,	the	user	can	use	the	chart	as	a	filter.	Go	to	the	temperature
scatter	plot	and	choose	the	days	that	have	under	4,000	users,	as	shown	in	the
following	screenshot.	After	analyzing	low	performing	days,	you	will	have
discovered	that	the	days	of	the	week	with	the	worst	performance	is	Saturday.



	

Use	the	month	chart	to	filter	January,	February,	and	March,	and	you	will	see	that,
during	these	months,	Saturday	and	Sunday	the	are	days	with	very	low
performance.	Perhaps	we	can	plan	a	promotional	activity	during	these	days	to
improve	our	activity	level.

Finally,	in	our	reporting	sheet,	we	can	place	one	or	more	tables	to	be	able	to	see
detailed	information	about	the	activity	each	day.



Using	Rattle	to	forecast	the	demand
In	this	section,	we'll	use	Rattle	for	a	quick	correlation	analysis	and	to	create	a
model	to	forecast	the	bike	demand.



Correlation	Analysis	with	Rattle
Our	dataset	has	three	possible	target	variables:	cnt,	registered,	and	casual.
Rattle	doesn't	handle	multiple	targets.	We	can	create	a	model	for	registered	and
a	second	model	for	casual	and	add	both	values	to	have	the	total	number	of
users,	or	we	can	build	a	model	for	cnt	(the	total	amount).	We	will	only	create	a
model	for	cnt	because	we're	interested	in	the	level	of	activity	and	this	variable
will	provide	it.

Load	the	dataset	into	Rattle	and	set	instant	to	Ident	and	dteday,	registered
and	casual	to	Ignore,	and	set	the	rest	of	variables	to	Input.

To	perform	the	correlation	analysis,	go	to	the	Explore	tab,	select	the
Correlation	radio	button	and,	finally,	press	the	Execute	button,	as	shown	in	this
screenshot:	

	

Rattle	will	return	us	a	correlation	matrix	and	a	correlation	plot.	The	correlation
matrix	is	a	matrix	that	displays	the	correlations	between	variables.	In	the
following	screenshot,	you	can	see	a	reduced	correlation	matrix.	We've	ignored
some	variables	to	create	a	simple	version	of	the	correlation	matrix.	The
correlation	index	is	a	number	between	-1	and	1.	When	the	coefficient	is	1,	the
variables	are	perfectly	correlated.	If	the	coefficient	is	-1,	the	variables	are
perfectly	and	negatively	related.	If	the	coefficient	is	0,	the	variables	are	not
related	and	are	not	useful	when	predicting	a	new	value.	In	order	to	describe	the
different	correlation	coefficients,	we	can	use	these	rules:

greater	than	0.7:	A	very	strong	positive	relationship



0.4	to	0.7:	A	strong	positive	relationship
0.3	to	0.4:	A	moderate	positive	relationship
0.2	to	0.3:	A	weak	positive	relationship
0.2	to	-0.2:	A	negligible	relationship
-0.2	to	-0.3:	A	weak	negative	relationship
-0.3	to	-0.4:	A	moderate	negative	relationship
-0.4	to	-0.7:	A	strong	negative	relationship
less	than	-0.7:	A	very	strong	negative	relationship

The	following	screenshot	shows	the	correlation	summary:	



	

Notice	that	there	is	a	strong	correlation	between	temp	(temperature)	and	atemp
(feeling	temperature)	and	that	our	target	variable	cnt	has	a	strong	correlation



with	variables	temp,	atemp,	and	yr.	We	already	knew	this	because	we
discovered	that	the	correlation	helps	explore	the	dataset	with	Qlik	Sense.

In	the	following	screenshot,	we	can	see	the	correlation	plot.	The	color	and	size
of	the	ball	explains	the	predictive	power	of	each	variable.	For	the	dependent
variable	cnt,	the	independent	variables,	yr,	atemp,	temp,	and	season,	are	strong
predictors.	The	independent	variable	mnth	is	a	moderate	predictor.	Finally,
windspeed	and	weathersit,	are	weak	predictors:

Note

Please	note	that	you	need	to	tick	Verbose,	and	Advanced	Graphics	in	the
Settings	menu	to	generate	the	following	screenshot.	The	ticking	of	Use	Cairo
Graphics	Device	is	optional.	Also	note	that	the	inner	Rattle	window	R	Data
Miner	-	[Rattle],	should	not	be	maximized	because	the	generated	screenshot
tends	to	go	behind	the	current	window.

	



As	we've	seen	in	Qlik	Sense,	variables	temp	and	atemp	have	a	strong	correlation.
We	will	use	just	one	of	them;	for	this	reason,	we	will	set	atemp	to	Ignore.



Building	a	model
Creating	a	predictive	model	is	an	iterative	process;	we	start	by	creating	a	model
with	the	training	dataset.	Then	we	evaluate	the	performance	with	the	validation
dataset,	and	we	modify	the	model	and	create	a	new	model.	Finally,	when	we	feel
comfortable,	we	can	test	the	performance	of	our	model	with	the	testing	dataset.

In	this	example,	we	won't	tune	the	performance	of	the	model.

Go	to	the	Data	tab	and	set	cnt	to	target	and	atemp	to	Ignore.	To	create	the
model,	go	to	the	Model	tab,	select	the	Linear	radio	button	and	press	Execute,	as
shown	in	the	following	screenshot:	



	

After	the	execution,	examine	the	summary	report	provided	by	Rattle,	starting
with	the	Residuals	section.	The	maximum	error	is	2384.4	and	the	minimum	is
-3911.9.	This	error	looks	very	high.	Notice	that	50	percent	of	the	occurrences	are
between	the	first	and	the	third	quartile,	so	50	percent	of	the	time	our	error	of
trying	to	estimate	users	is	between	-	442.6	and	530.5.



In	the	coefficients	section,	the	last	column	shows	us	the	significance	of	each
variable	or	the	predictive	power—***	for	strong	predictive	power	and	*	for
weak	predictive	power.

The	last	section,	Adjusted	R-squared,	explains	how	accurate	our	model	is	when
predicting	the	values	of	the	dependent	variable.	In	our	example,	the	value	of	R-
squared	is	0.8122,	which	means	that	81.22	percent	of	the	variation	of	cnt	is
explained	by	our	model.

To	have	a	reference	of	the	model	performance,	we	need	to	test	its	predictive
power	against	the	validation	dataset.	As	we	saw	in	Chapter	7,	Model	Evaluation,
to	evaluate	the	performance	of	a	regression	model,	we	can	use	a	plot	called
Predicted	versus	Observed	Plot	(Pr	v	Ob),	as	shown	here:	

	

We've	created	a	model	that	has	Pseuso	R-square	=	0.7129.	In	the	next	section,
we'll	try	to	improve	the	performance	of	the	model	by	transforming	numeric



variables	with	a	non-lineal	relationship	with	the	dependent	variables.



Improving	performance
Now,	we	will	enter	in	an	iterative	process,	tune	the	model,	and	check	the
performance	with	the	validation	dataset	until	we	achieve	the	performance
needed.	We	will	see	how	to	make	a	transformation	with	an	example.	In	this
section,	we	will	only	make	a	small	transformation.

As	we've	seen	in	the	previous	section,	we	have	numeric	variables	that	have	a
non-lineal	relationship	with	the	target	variable.

To	explain	how	to	transform	the	variables,	we're	going	to	use	the	variable,
season.	As	we've	seen,	season	is	a	numeric	variable	that	has	a	non-lineal
relationship	with	registered.	We	would	like	to	transform	the	numeric	variable
with	four	different	values	to	four	flags	or	indicators,	as	shown	in	the	following
table:

Season Spring	flag Summer	flag Fall	flag Winter	flag

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

We're	going	to	transform	the	variable	in	two	different	steps.	Go	to	the
Transform	tab,	select	the	variable,	season,	select	the	Recode	radio	button,
select	the	As	Categoric	radio	button	and	press	Execute,	as	shown	in	the
following	screenshot:



	

Rattle	has	added	a	new	variable	called	TFC_season;	this	is	a	categorical
variable.	For	the	second	step,	go	to	the	Transform	tab,	select	the	variable
TFC_season,	select	the	Recode	Radio	button,	select	the	Indicator	Variable
Radio	button	and	press	Execute.	After	these	operations	are	done,	you	will	see
the	following	result:



	

Now	Rattle	has	created	four	new	numeric	variables.	Each	variable	has	two
possible	values,	0	or	1.

You	need	to	create	the	model	again	but,	before	that,	ensure	that	the	new	flag
variables	are	selected	as	input,	as	shown	in	this	screenshot:

	

After	creating	the	new	model,	review	the	new	R-squared	and	Adjusted	R-
squared	values	and	you	will	see	some	improvement	in	performance.

As	we've	explained	before,	the	process	of	improving	or	tuning	a	model	is
iterative.	After	the	performance	evaluation,	you	can	transform	your	data	or
modify	the	model	and	evaluate	the	performance	again	until	your	performance	is
acceptable.



Model	evaluation
As	we	saw	in	Chapter	7,	Model	Evaluation,	to	evaluate	the	performance	of	a
regression	model,	we	can	use	a	plot	called	Predicted	versus	Observed	Plot	(Pr	v
Ob),	as	shown	here:

	

We've	quickly	developed	a	model	that	achieved	a	Pseudo	R-square	of	0.744.	We
did	a	small	optimization	in	the	model;	we	can	improve	the	performance	by
working	with	the	different	variables.

After	improving	the	model	using	the	training	dataset	to	build	the	model	and	the
validation	dataset	to	evaluate	this	performance,	we	need	to	confirm	the
performance	of	our	model	by	creating	a	Predicted	versus	Observed	Plot	with	the
test	dataset.	We	can	do	that	to	detect	overfitting.



A	very	interesting	feature	of	Rattle	is	that	we	can	run	multiple	models	and
evaluate	the	performance	of	the	different	models.	Go	to	the	Model	tab	and	build
a	Neural	Network	model.	Now,	return	to	the	Evaluate	tab	and	select	the	Linear
and	Neural	Net	checkboxes	and	press	the	Execute	button,	you	can	compare	the
two	different	models,	as	shown	in	the	following	screenshot.	As	we	saw	in
Chapter	6,	Decision	Trees	and	Other	Supervised	Learning	Methods,	Neural
Networks	are	a	kind	of	algorithm	inspired	by	biological	Neural	Networks	which
are	used	to	approximate	functions:

	

Now	that	we	have	a	model	to	predict	the	demand	of	rental	bikes,	we	want	to	add
demand	forecast	information	to	our	Qlik	Sense	application.

The	first	step	is	to	predict	the	new	values,	or	forecast	the	demand.	The	second
and	final	step	is	to	load	the	data	into	Qlik	Sense.



Scoring	new	data
We	have	three	main	options	to	score	new	data,	these	are	listed	as	follows:

Qlik	Sense:
We've	found	the	coefficients	for	the	regression;	we	can	use	it	in	Qlik
Sense	during	the	data	loading	or	we	can	create	a	measure	with	the
formula.
This	option	has	a	great	disadvantage;	we	would	normally	prefer	to	re-
evaluate	the	model	with	new	data.	If	we	change	the	model,	we	will
have	to	update	the	Qlik	Sense	app.

R:
We	can	save	our	model	in	Rattle	and	then	we	can	load	the	model	in	R.
We	can	use	the	predict()	function	to	score	new	data.	This	is	a	good
option	but	the	last	option	is	the	easiest	of	all.

Rattle:
In	Rattle's	Evaluate	tab,	we	can	use	the	Score	option.	Using	this
option,	we	can	score	the	training,	the	validation	or	the	testing	dataset,
or	we	can	load	a	dataset	from	a	CSV	file.

In	a	real	case,	we	will	have	the	weather	forecast	for	the	next	week,	and	we'll	use
Rattle	to	load	the	data	from	a	CSV	file.	In	this	example,	we	don't	have	next
week's	forecast	and	we'll	score	the	testing	dataset	and	the	complete	dataset.

Go	to	the	Evaluate	tab,	select	Score,	Testing,	and	All	and	press	the	Execute
button.	Rattle	will	score	the	testing	dataset	for	you	and	will	write	the	prediction
in	a	CSV	file.	This	file	will	include	all	original	variables	and	a	new	variable
called	glm	with	the	predicted	value,	as	shown	in	the	following	screenshot.	Before
finishing,	you	need	to	confirm	the	location	and	name	of	the	file:

	



Now,	we	will	check	the	performance	of	our	model	by	using	Qlik	Sense.	Create	a
new	Qlik	Sense	application	and	load	the	file	generated	by	Rattle.	This	file
contains	111	rows	and	the	testing	dataset,	and	each	row	contains	all	the	original
data	and	the	predicted	value.	Create	a	scatter	plot	with	dteday	as	the	dimension
and	glm	and	cnt	as	measures,	as	shown	here:

	

We've	created	a	Predicted	versus	Observed	Plot	with	the	testing	dataset.	This
chart	and	the	one	we	created	in	Rattle	gives	us	an	idea	of	the	predictive	power	of
our	model.	We	don't	need	this	plot	because	we've	created	it	in	Rattle.

Now,	come	back	to	Rattle	to	score	the	complete	dataset.	Select	the	Full	dataset
and	report	just	the	Identifiers	included,	as	shown	here:

	

Rattle	will	create	a	file	with	731	observation	with	all	the	original	columns	and	a



new	column	with	the	predicted	value	called	glm.

We	will	load	this	information	in	to	our	original	bikes	application.	Go	to	Qlik
Sense,	open	the	original	application,	and	drag	and	drop	this	second	file	into	the
application.	Qlik	Sense	will	ask	you	if	you	want	to	add	new	data	or	replace	the
current	data,	if	yes,	then	select	Add	data.	After	loading	the	data,	open	Data
model	viewer,	as	shown	in	the	following	screenshot:

	



Rattle	has	created	a	file	that	contains	variables,	the	identifier	ident	and	the
prediction	glm.	When	we	load	this	file	into	Qlik	Sense,	it	creates	an	association
with	our	original	table	using	the	field	ident.	Finally,	create	two	charts	to	show
the	predictive	power	of	our	model.	In	the	first	chart,	I	used	a	line	chart	with
dteday	as	the	dimension	and	cnt	and	glm	as	measures,	as	shown	here:

	

Be	careful	with	these	plots,	we've	added	the	training	dataset	and	the	validation
and	testing	ones.	We	used	training	and	validation	datasets	to	build	the	model,	so
this	plot	doesn't	provide	us	a	real	idea	of	the	predictive	power	of	our	model.	The
previous	plots	we	did	just	with	the	testing	dataset	gave	us	a	real	idea	of	the
performance.

In	the	real	world,	we	will	load	the	weather	forecast	for	the	following	week	into
Rattle	and	we	will	score	it.	By	loading	historic	and	forecast	data	into	Qlik	Sense,
we	will	be	able	to	create	visualizations	that	are	similar	to	the	following
screenshot,	which	shows	historic	and	forecast	data	together:



	



Further	learning
Predictive	Analytics	and	Data	Visualizations	are	huge	topics	and	in	this	book	I
just	introduced	the	key	concepts.

Related	to	Qlik	Sense,	we	forget	a	lot	of	important	things.	In	my	opinion,	the
data	load	editor	is	among	the	most	powerful.	In	order	to	learn	more	about	Qlik
Sense	and	the	Data	load	editor,	you	may	want	to	check	out:

Learning	Qlik®	Sense:	The	Official	Guide,	Christopher	Ilacqua,	Henric
Cronström,	James	Richardson.	Packt	Publishing.

In	order	to	increase	your	knowledge	and	learn	more	about	Qlik	Sence,	I
suggested	you	some	books	and	web	sites.	A	very	good	source	of	information	and
advice	can	be	the	Qlik	Community:

https://community.qlik.com

This	is	the	most	active	community	in	the	BI	landscape.

You	also	learned	how	to	use	Rattle	to	create	predictive	models.	In	this	book,
we've	focused	on	Clustering,	Decision	Trees,	and	Linear	Regression;	these	are
the	most	common	predictive	techniques.	You	can	use	these	techniques	in	your
own	datasets	to	provide	insights.	To	improve	your	Rattle	knowledge,	the	best
book	is	Data	Mining	with	Rattle	and	R,	The	Art	of	Excavating	Data	for
Knowledge	Discovery,	Graham	Williams,	Springer.

The	videos	listed	on	this	page	are	also	a	good	source	of	knowledge:

http://rattle.togaware.com/rattle-videos.html

Rattle	also	has	a	very	interesting	users	group:

https://groups.google.com/forum/#!forum/rattle-users

Finally,	if	you	prefer	to	learn	predictive	techniques	with	R,	try	Machine
Learning	with	R,	Brett	Lantz,	Packt	Publishing.

https://community.qlik.com
http://rattle.togaware.com/rattle-videos.html
https://groups.google.com/forum/#!forum/rattle-users


A	funny	and	very	good	way	to	improve	your	skills	in	predictive	analytics	is
Kaggle.	This	is	the	world's	largest	community	of	data	scientists.	In	this
community,	you	can	find	data	science	competitions.	We've	not	used	the	term
data	science	in	this	book;	there	are	a	lot	of	new	terms	around	analytics,	and	we
tried	to	focus	on	just	a	few	to	avoid	confusion.	Currently,	we	use	this	term	to
refer	to	an	engineering	area	dedicated	to	collecting,	cleaning,	and	manipulating
data	to	unearth	new	knowledge.	At	www.kaggle.com,	you	can	find	different
types	of	competitions.	There	are	introductory	competitions	for	beginners,	and
there	are	competitions	with	monetary	prizes.	You	can	access	a	competition,
download	the	data	and	the	problem	description,	and	create	your	own	solutions.
An	example	of	a	Kaggle	competition	is	the	bike	sharing	example	we	used	in	this
chapter.

Finally,	in	Chapter	1,	Getting	Ready	with	Predictive	Analytics,	we	introduced
Competing	on	Analytics,	by	Thomas	H.	Davenport	and	Jeanne	G	Harris,
Harvard	Business	Review	Press;	if	you	are	worried	about	how	to	apply
predictive	analytics	at	a	business	level,	start	with	this	book.

http://www.kaggle.com


Summary
In	this	chapter,	we	used	Qlik	Sense	to	explore	the	bike	sharing	dataset.	In	Qlik
Sense,	we	saw	different	ways	of	doing	an	intuitive	correlation	analysis.

After	this,	we	created	an	application	to	analyze	the	rental	activity.	The
application	had	three	sheets	following	the	DAR	approach.

Finally,	we	used	Rattle	to	confirm	the	correlation	analysis	we	did	with	Qlik
Sense,	then	we	created	a	predictive	model	to	forecast	the	demand	depending	on
the	weather	forecast.

With	Rattle,	we	used	the	variable	cnt	as	the	target	variable;	it	would	be	very
interesting	to	repeat	the	exercise	using	the	variables	registered	and	casual.

You've	arrived	at	the	end	of	the	book,	so	by	now	you	should	understand	the
basics	of	predictive	analytics	and	data	visualization	and	have	gained	some
expertise	in	using	Rattle	and	Qlik	Sense	Desktop.

Now	you	can	use	Qlik	Sense	to	quickly	analyze	business	data.	With	Qlik	Sense
you	can	discover	hidden	patterns	in	your	data	and	create	powerful	visualizations
to	present	the	conclusions	of	your	analysis.



Appendix	A.	Bibliography
This	course	is	a	blend	of	text	and	quizzes,	all	packaged	up	keeping	your	journey
in	mind.	It	includes	content	from	the	following	Packt	products:

Learning	Qlik	Sense:	The	Official	Guide	Second	Edition,	Dr.	Christopher
Ilacqua,	Dr.	Henric	Cronström	and	James	Richardson
Qlik	Sense	Cookbook,	Philip	Hand	and	Neeraj	Kharpate
Predictive	Analytics	using	Rattle	and	Qlik	Sense,	Ferran	Garcia	Pagans
and	Fernando	G	Pagans



Index
A

access	pass	/	Tokens
age	of	oldest	case,	in	queue

calculating,	Minstring()	function	used	/	Using	the	Minstring()	function
to	calculate	the	age	of	the	oldest	case	in	a	queue,	How	to	do	it…,	How
it	works…

analysis	interface,	authoring	engaging	applications
about	/	The	analysis	interface—sheets	and	visualizations
sheet,	creating	/	Creating	a	sheet
visualizations,	adding	/	Adding	visualizations
dimensions,	adding	/	Adding	dimensions	and	measures
measures,	adding	/	Adding	dimensions	and	measures
bar	charts,	defining	/	Defining	bar	charts
storytelling	/	Storytelling

analytics	/	Analytics,	predictive	analytics,	and	data	visualization
application	library,	authoring	engaging	applications

about	/	The	application	library
fields,	to	be	exposed	/	Which	fields	should	be	exposed?
KPIs,	defining	/	Defining	KPIs
library	entries,	creating	/	Creating	library	entries

application	life	cycle
overview	/	Overview	of	an	application's	life	cycle
application	authoring,	starting	/	Starting	application	authoring
continuing	/	Continuing	the	application's	life	cycle

applications
managing	/	Management	and	monitoring
importing	/	Importing	and	managing	apps
extensions,	importing	/	Importing	extensions
users	/	Users	and	user	directories
user	directories	/	Users	and	user	directories
streams,	defining	/	Defining	streams
connectivity	management	/	Connectivity	management
tasks	/	Tasks



system	management	/	System	management
security	rules	/	Security	rules
monitoring	/	Monitoring

approved	sheets
about	/	Creating	private,	approved,	and	community	sheets
creating	/	Getting	ready,	How	it	works…

architecture,	Qlik	Sense®
about	/	The	Qlik	Sense®	architecture
services	/	Services
clients	/	Clients
applications	/	Applications
nodes	/	Nodes
streams	/	Streams

association	analysis
about	/	Association	analysis

associative	logic
about	/	Associative	logic
working	/	Associative	logic

Attribute-Relation	File	Format	(ARFF)	/	Loading	data
authentication

about	/	Authentication	and	authorization
authoring	engaging	applications

preparations	/	Preparations	and	requirements
requisites	/	Preparations	and	requirements
requirement	specifications	/	The	requirement	specifications
communication	problem	/	The	communication	problem
step-wise	implementation	/	A	step-wise	implementation
process	/	The	process
creating	/	Getting	started	with	the	app	creation,	Creating	a	new	app
data,	loading	/	Loading	your	data
analysis	interface	/	The	analysis	interface—sheets	and	visualizations
application	library	/	The	application	library
publishing	/	Publishing	your	apps

authorization
about	/	Authentication	and	authorization



B
bar	chart

about	/	The	bar	chart
creating	/	Creating	a	bar	chart
personalizing	/	Creating	a	bar	chart

best	practices,	data	visualization
about	/	Best	practices	in	data	visualization
dashboard	/	Dashboard
analysis	/	Analysis
reporting	/	Reporting
sheet,	structuring	/	Structuring	a	sheet
graphs	/	Graphs	and	other	visualizations
dimensions	/	Dimensions	and	measures
measures	/	Dimensions	and	measures

Bike	Sharing	Dataset
reference	/	Understanding	the	bike	rental	problem

bike	sharing	system
bike	rental	problem	/	Understanding	the	bike	rental	problem
data,	exploring	with	Qlik	Sense	/	Exploring	the	data	with	Qlik	Sense

binning
about	/	Binning

Bookmarks	/	How	it	works…
bookmarks

about	/	Bookmarks
boosting	method	/	Boosting
Business	Discovery	/	Continuing	disruption
Business	Intelligence	(BI)

about	/	In-memory	analysis
business	intelligence	(BI)	/	Continuing	disruption

evolution	/	Data	discovery—the	evolution	of	BI
business	problem

about	/	The	business	problem



C
Calendar	fields

generating,	Declare	function	used	/	Using	the	Declare	and	Derive
functions	to	generate	Calendar	fields,	How	to	do	it…,	There's	more…
generating,	Derive	function	used	/	Using	the	Declare	and	Derive
functions	to	generate	Calendar	fields,	How	to	do	it…,	There's	more…

Capventis	Redmond	Pie-Gauge
reference	link	/	There's	more…

casual	users	/	Understanding	the	bike	rental	problem
categorical	variable

about	/	Datasets,	observations,	and	variables
categorical	variables

about	/	Categorical	variables
bar	chart	/	Bar	plots
mosaic	plot	/	Mosaic	plots

centroid	/	Centroid-based	clustering	the	using	K-means	algorithm
charts

limitations,	applying	to	/	Applying	limitations	to	charts,	How	to	do
it…,	There's	more…
creating	/	Creating	charts
pie	chart,	creating	/	Creating	charts
bar	chart,	creating	/	Creating	charts
Data	menu	/	The	Data	menu
Sorting	menu	/	The	Sorting	menu
Add-ons	menu	/	The	Add-ons	menu
Appearance	menu	/	The	Appearance	menu

classifiers	performance
measuring	/	Measuring	the	performance	of	classifiers
confusion	matrix	/	Confusion	matrix,	accuracy,	sensitivity,	and
specificity
accuracy	/	Confusion	matrix,	accuracy,	sensitivity,	and	specificity
sensitivity	/	Confusion	matrix,	accuracy,	sensitivity,	and	specificity
specificity	/	Confusion	matrix,	accuracy,	sensitivity,	and	specificity
types	of	predictions	/	Confusion	matrix,	accuracy,	sensitivity,	and
specificity



Risk	Chart,	obtaining	/	Risk	Chart
ROC	Curve	/	ROC	Curve

cleanup	options
about	/	Cleaning	up

clients,	Qlik	Sense®
about	/	Clients
hub	/	Clients
Qlik	Management	Console	(QMC)	/	Clients

cloud
features	/	Why	use	the	cloud?
content	/	Cloud	content

cloud	sharing
about	/	Cloud	sharing

cluster
about	/	Nodes

cluster	analysis
about	/	Cluster	analysis
centroid-based	clustering,	K-means	algorithm	used	/	Centroid-based
clustering	the	using	K-means	algorithm
customer	segmentation,	with	K-means	clustering	/	Customer
segmentation	with	K-means	clustering
data,	preparing	in	Qlik	Sense	/	Preparing	the	data	in	Qlik	Sense
customer	segmentation	sheet,	creating	in	Qlik	Sense	/	Creating	a
customer	segmentation	sheet	in	Qlik	Sense

code
packaging,	in	script	files	/	Packaging	the	code	in	script	files,	How	to
do	it…,	How	it	works…

ColorMix1	function
using	/	Using	the	ColorMix1	function,	Getting	ready,	How	it	works…

com-qliktech-peoplechart.js	file	/	Extending	the	Qlik	Sense®	client
com-qliktech-peoplechart.qext	file	/	Extending	the	Qlik	Sense®	client
Comma	Separated	Value	(CSV)	/	Loading	data
community	sheets

about	/	Creating	private,	approved,	and	community	sheets
creating	/	Getting	ready,	How	it	works…

comparison
about	/	Comparison,	How	it	works…



comparison	sets
using,	in	Set	Analysis	/	Using	comparison	sets	in	Set	Analysis,	How	to
do	it…,	How	it	works…

Complexity	Parameter	(CP)	/	Cross-validation
components,	applications

sheets	/	Sheets
bookmarks	/	Bookmarks
data	storytelling	/	Data	storytelling

composition
about	/	Composition,	How	to	do	it…,	There's	more…

Comprehensive	R	Archive	Network	(CRAN)	/	Downloading	and	installing
R
concat()

used,	for	capturing	list	of	field	values	/	Capturing	a	list	of	field	values
using	a	concat()	function	in	Set	Analysis,	How	it	works…

Concat()	function
used,	for	displaying	string	of	field	values	as	dimensions	/	Using	the
Concat()	function	to	display	a	string	of	field	values	as	a	dimension,
How	to	do	it…,	How	it	works…

Concat	function
for	storing	multiple	field	values	in	single	cell	/	Using	the	Concat
function	to	store	multiple	field	values	in	a	single	cell,	How	it	works…
about	/	Using	the	Concat	function	to	store	multiple	field	values	in	a
single	cell

connectivity	/	Connectivity	management
contents

creating	/	Creating	and	adding	content	to	a	story
adding,	to	story	/	Creating	and	adding	content	to	a	story,	How	to	do
it…,	There's	more…

content	security
about	/	Content	security

correlation,	among	input	variables
about	/	Correlations	among	input	variables

correlation	analysis,	with	Rattle	/	Correlation	Analysis	with	Rattle
correlation	coefficient

about	/	Correlations	among	input	variables
credit	risks



classifying,	with	Decision	Tree	/	Using	a	Decision	Tree	to	classify
credit	risks

cross-validation
about	/	Cross-validation
implementing	/	Cross-validation

CSV	file
loading	/	Loading	a	CSV	File

cumulative	figures,	in	trendlines	charts
plotting,	Rangesum()	function	used	/	Using	the	Rangesum()	function
to	plot	cumulative	figures	in	trendline	charts,	How	to	do	it…,	How	it
works…

currency	Exchange	Rate	Calendar
creating,	Peek()	function	used	/	Using	the	Peek()	function	to	create	a
currency	Exchange	Rate	Calendar,	How	to	do	it…,	How	it	works…

custom	components
creating,	within	Qlik	Sense	visualizations	/	Creating	custom
components	within	Qlik	Sense®	visualizations,	Getting	ready,	How	to
do	it…
reference	link,	for	creating	/	There's	more…

customer	buying	behavior	/	Customer	segmentation	and	customer	buying
behavior
customer	segmentations

about	/	Customer	segmentation	and	customer	buying	behavior
types	/	Customer	segmentation	and	customer	buying	behavior



D
DAR	methodology

reference	link	/	Further	learning
Dashboard	Analysis	and	Reporting	(DAR)

about	/	In-memory	analysis,	The	DAR	approach
Dashboard	Analysis	Reporting	(DAR)	methodology	/	Introduction
dashboards

about	/	Data	analysis,	data	applications,	and	dashboards,	Data
applications	and	dashboards

data
about	/	Introduction
extracting,	from	databases	and	data	files	/	Extracting	data	from
databases	and	data	files,	Getting	ready…,	How	to	do	it…,	There's
more…
extracting,	from	web	files	/	Extracting	data	from	Web	Files,	How	to	do
it…,	How	it	works…
extracting,	from	custom	databases	/	Extracting	data	from	custom
databases,	How	to	do	it…,	How	it	works…
using,	with	extensions	/	Using	data	with	extensions,	How	to	do	it…,
How	it	works…
loading	/	Loading	data,	Loading	data	and	creating	a	data	model
rescaling	/	Rescaling	data
Impute	option,	used	for	dealing	with	missing	values	/	Using	the	Impute
option	to	deal	with	missing	values
exporting	/	Exporting	data
preparing	/	Preparing	the	data
analyzing	/	Analyzing	your	data

data,	structuring
about	/	Structuring	your	data
normalization	/	Normalization
star	schema	/	Star	schema	and	snowflake	schema
snowflake	schema	/	Star	schema	and	snowflake	schema

data	analysis,	Qlik	Sense
about	/	Qlik	Sense	data	analysis
in	memory	analysis	/	In-memory	analysis



associative	logic	/	Associative	experience
data	applications

about	/	Data	analysis,	data	applications,	and	dashboards,	Data
applications	and	dashboards

data	discovery	/	Continuing	disruption
about	/	What	is	data	discovery?,	Data	discovery—the	evolution	of	BI
empowered	user	/	The	empowered	user
data	interaction	/	Interaction	with	data
traditional	business	intelligence	architecture	/	Traditional	business
intelligence	architecture
contributing	to	/	Realities	of	the	data	discovery	contributor
private	bookmarks,	creating	/	Creating	private	bookmarks
private	sheets,	creating	/	Creating	and	sharing	private	sheets,	Creating
a	private	sheet
private	sheets,	sharing	/	Creating	and	sharing	private	sheets
private	sheets,	publishing	/	Publishing	a	private	sheet
new	sheet,	creating	/	Creating	a	new	sheet

data	discovery	consumption	requirements
about	/	Data	discovery	consumption	requirements
hub	/	Introducing	the	hub
streams	/	Introducing	streams
application	components,	exploring	/	Exploring	the	components	of	the
application
associative	experience,	leveraging	/	Navigating	and	leveraging	the
associative	experience
associative	experience,	navigating	/	Navigating	and	leveraging	the
associative	experience
Library,	extending	with	/	Extending	with	Library

data	exploring,	with	Qlik	Sense
about	/	Exploring	the	data	with	Qlik	Sense
temporal	patterns,	checking	/	Checking	for	temporal	patterns
visual	correlation	analysis	/	Visual	correlation	analysis

data	load	editor
help,	invoking	/	Invoking	help	while	in	the	data	load	editor	or	the
expression	editor,	Getting	ready…,	There's	more…

data	loading,	authoring	engaging	applications
about	/	Loading	your	data



additional	tables,	loading	/	Loading	additional	tables
Data	load	editor,	using	/	Using	the	Data	load	editor
database	connection,	creating	/	Creating	a	database	connection
data	connectors	/	Data	connectors

data	model
creating	/	Loading	data	and	creating	a	data	model,	Preparing	the	data
checking	/	Preparing	the	data

data	model	viewer
about	/	The	data	model	viewer
preview	mode,	using	/	Using	preview	mode
data,	previewing	/	Previewing	data	in	the	Data	model	viewer,	How	it
works...
data	model,	viewing	/	Viewing	the	data	model
associations,	viewing	/	Viewing	the	associations
table	meta	data	/	Table	Meta	Data
master	library,	creating	from	/	Creating	a	Master	Library	from	the	Data
model	viewer,	How	to	do	it...,	How	it	works...,	There's	more…

data	points
navigating,	in	scatter	chart	/	Navigating	many	data	points	in	a	scatter
chart,	How	to	do	it…,	How	it	works…

data	science	/	Datasets,	observations,	and	variables
Data	Science

reference	URL	/	Further	learning
dataset

about	/	Datasets,	observations,	and	variables
variable	description	/	Datasets,	observations,	and	variables
reference	/	Customer	segmentation	with	K-means	clustering
instant	/	Understanding	the	bike	rental	problem
dteday	/	Understanding	the	bike	rental	problem
season	/	Understanding	the	bike	rental	problem
yr	/	Understanding	the	bike	rental	problem
mnth	/	Understanding	the	bike	rental	problem
hr	/	Understanding	the	bike	rental	problem
weekday	/	Understanding	the	bike	rental	problem
workingday	/	Understanding	the	bike	rental	problem
weathersit	/	Understanding	the	bike	rental	problem
temp	/	Understanding	the	bike	rental	problem



atemp	/	Understanding	the	bike	rental	problem
hum	/	Understanding	the	bike	rental	problem
windspeed	/	Understanding	the	bike	rental	problem
casual	/	Understanding	the	bike	rental	problem
registered	/	Understanding	the	bike	rental	problem
cnt	/	Understanding	the	bike	rental	problem

datasets
partitioning	/	Partitioning	datasets	and	model	optimization

data	storytelling
about	/	Data	storytelling

data	storytelling,	Qlik	Sense
about	/	Data	storytelling	with	Qlik	Sense
audience	/	Data	storytelling	with	Qlik	Sense
objective	/	Data	storytelling	with	Qlik	Sense
key	messages	/	Data	storytelling	with	Qlik	Sense
story	/	Data	storytelling	with	Qlik	Sense
links	/	Data	storytelling	with	Qlik	Sense
reviewing	/	Data	storytelling	with	Qlik	Sense
new	story,	creating	/	Creating	a	new	story

data	transformation
about	/	Transforming	data
Rattle,	used	/	Transforming	data	with	Rattle
variables,	recoding	/	Recoding	variables
binning	/	Binning
indicator	variables	/	Indicator	variables

data	visualization	/	Analytics,	predictive	analytics,	and	data	visualization
best	practices	/	Best	practices	in	data	visualization
books,	for	references	/	Further	learning

data	visualization,	Qlik	Sense
about	/	Data	visualization	in	Qlik	Sense
visualization	toolbox	/	Visualization	toolbox
bar	chart,	creating	/	Creating	a	bar	chart

Decision	Tree
creating	/	Entropy	and	information	gain
using,	for	credit	risk	classification	/	Using	a	Decision	Tree	to	classify
credit	risks
URL	/	Using	a	Decision	Tree	to	classify	credit	risks



loan	applications,	scoring	with	Rattle	/	Using	Rattle	to	score	new	loan
applications
Qlik	Sense	application,	creating	/	Creating	a	Qlik	Sense	application	to
predict	credit	risks

Decision	Tree	Learning
about	/	Decision	Tree	Learning
advantages	/	Decision	Tree	Learning
disadvantages	/	Decision	Tree	Learning

Declare	function
used,	for	generating	Calendar	fields	/	Using	the	Declare	and	Derive
functions	to	generate	Calendar	fields,	How	to	do	it…,	There's	more…

Default?	Attribute	/	Confusion	matrix,	accuracy,	sensitivity,	and	specificity
default	charts,	Qlik	Sense

Bar	chart	/	Visualization	toolbox
Combo	chart	/	Visualization	toolbox
Filter	pane	/	Visualization	toolbox
Line	chart	/	Visualization	toolbox
Map	/	Visualization	toolbox
Pie	chart	/	Visualization	toolbox
Scatter	plot	/	Visualization	toolbox
Table	/	Visualization	toolbox
Pivot	Table	/	Visualization	toolbox
Text	&	image	/	Visualization	toolbox
Treemap	/	Visualization	toolbox
Extensions	/	Visualization	toolbox

Demographic	Data	Discoverapplication
problem	analysis	/	Problem	analysis
features	/	Application	features
analysis	/	Analysis
lasso	selector,	for	making	selections	/	Using	the	lasso	selector	to	make
selections
global	selector,	for	making	selections	/	Using	the	global	selector	to
make	selections
developing	/	How	the	application	was	developed
dimensions	/	Dimensions
measures	/	Measures

dendrogram



about	/	Hierarchical	clustering
deployment,	Qlik	Sense®

about	/	Deployment	and	licensing
single	node	/	Single	node	or	multinode
multinode	/	Single	node	or	multinode
license	/	License	and	access	passes
access	passes	/	License	and	access	passes
tokens	/	Tokens
access	rules	/	Access	rules

Derive	function
used,	for	generating	Calendar	fields	/	Using	the	Declare	and	Derive
functions	to	generate	Calendar	fields,	How	to	do	it…,	There's	more…

descriptive	analytics
about	/	Machine	learning	–	unsupervised	and	supervised	learning

dimension	/	Adding	dimensions	and	measures
dimensionless	bar	charts

creating,	in	Qlik	Sense	/	Creating	dimensionless	bar	charts	in	Qlik
Sense®,	How	to	do	it…,	There's	more…

dimensions,	Travel	Expense	Discovery	application
about	/	Dimensions
measures	/	Measures
visualizations	/	Visualizations

disadvantages,	Decision	Tree	Learning
unstable	/	Decision	Tree	Learning
overfitting	/	Decision	Tree	Learning

distribution
about	/	Distribution,	How	to	do	it…

distributions
visualizing	/	Visualizing	distributions
numeric	variables	/	Numeric	variables
categorical	variables	/	Categorical	variables

dynamic	charts
creating,	in	Qlik	Sense	/	Creating	dynamic	charts	in	Qlik	Sense®,	How
to	do	it…,	How	it	works…



E
E()	function

using,	in	Set	Analysis	/	Using	the	element	functions	P()	and	E()	in	Set
Analysis,	How	to	do	it…,	There's	more…

embedded	functions
using,	in	Set	Analysis	/	Using	embedded	functions	in	Set	Analysis,
How	it	works…,	There's	more…

embedded	sheets
adding,	to	story	/	Adding	embedded	sheets	to	the	story,	How	to	do
it…,	There's	more…

Engine	API	Explorer
about	/	Engine	API	Explorer

Ensemble	methods
about	/	Ensemble	classifiers
URL	/	Ensemble	classifiers
boosting	/	Boosting
Random	Forest	/	Random	Forest
Supported	Vector	Machine	(SVM)	/	Supported	Vector	Machines

entropy
about	/	Entropy	and	information	gain

environment
installing	/	Installing	the	environment

error	rate	/	Confusion	matrix,	accuracy,	sensitivity,	and	specificity
Explore	Missing	option

about	/	The	Explore	Missing	and	Hierarchical	options
expression	editor

help,	invoking	/	Invoking	help	while	in	the	data	load	editor	or	the
expression	editor,	How	to	do	it…,	There's	more…

extended	interval	match
used,	for	handling	Slowly	Changing	Dimensions	/	Using	an	extended
interval	match	to	handle	Slowly	Changing	Dimensions,	How	to	do
it…,	How	it	works…,	There's	more…

Extension	editor
using,	in	Qlik	Dev	Hub	/	Using	Extension	editor	in	Qlik	Dev	Hub,
How	to	do	it…,	There's	more…



extensions
data,	using	with	/	Using	data	with	extensions,	How	to	do	it…,	How	it
works…



F
fact	table

about	/	Associative	experience
fields,	used	as	dimensions

nominals	/	Dimensions	and	measures
ordinals	/	Dimensions	and	measures
intervals	/	Dimensions	and	measures
ratios	/	Dimensions	and	measures

field	values	list
capturing,	concat()	used	/	Capturing	a	list	of	field	values	using	a
concat()	function	in	Set	Analysis,	How	it	works…

files
extracting	from	folders,	For	Each	loop	used	/	Using	the	For	Each	loop
to	extract	files	from	a	folder,	Getting	ready,	How	to	do	it…,	How	it
works…

files,	Qlik	Sense	extension
.JS	file	/	Creating	an	HTML	visualization	extension	for	Qlik	Sense®
.QEXT	file	/	Creating	an	HTML	visualization	extension	for	Qlik
Sense®

FirstSortedValue()	function
used,	for	identifying	median	in	quartile	range	/	Using	the
FirstSortedValue()	function	to	identify	the	median	in	a	quartile	range,
How	it	works…

flags
using,	in	Set	Analysis	expressions	/	How	to	do	it…,	There's	more…

For	Each	loop
for	loading	data,	from	multiple	files	/	Using	a	For	Each	loop	to	load
data	from	multiple	files,	How	to	do	it…,	How	it	works…
used,	for	extracting	files	from	folders	/	Using	the	For	Each	loop	to
extract	files	from	a	folder,	Getting	ready,	How	to	do	it…,	How	it
works…

Fractile()	function
used,	for	generating	quartiles	/	Using	the	Fractile()	function	to
generate	quartiles,	How	to	do	it…,	How	it	works…



G
gauge	object

about	/	The	gauge
General	Public	License	(GNU)	/	Introducing	R,	Rattle,	and	Qlik	Sense
Desktop
geographical	map

about	/	The	geographical	map
geo	maps

creating,	in	Qlik	Sense	/	Creating	geo	maps	in	Qlik	Sense®,	Getting
ready,	How	to	do	it…,	How	it	works…,	There's	more…

Global	Defined	Data	Sources	/	What	makes	up	a	Qlik	Sense®	application?
Graphical	User	Interface	(GUI)	/	Introducing	R,	Rattle,	and	Qlik	Sense
Desktop
graph	types,	data	visualization

bar	chart	/	The	bar	chart
pie	chart	/	The	pie	chart
line	chart	/	The	line	chart
KPI	object	/	The	KPI	object
gauge	object	/	The	gauge
scatter	chart	/	The	scatter	chart
tree	map	/	The	tree	map
geographical	map	/	The	geographical	map
tables	/	Tables
sorting	/	Sorting	and	colors
colors	/	Sorting	and	colors



H
hierarchical	clustering

about	/	Hierarchical	clustering
Hierarchical	option

about	/	The	Explore	Missing	and	Hierarchical	options
HTML	visualization	extension

creating,	for	Qlik	Sense	/	Creating	an	HTML	visualization	extension
for	Qlik	Sense®,	How	to	do	it…,	How	it	works…,	There's	more…

hub	/	Overview	of	an	application's	life	cycle
about	/	Introducing	the	hub,	Clients

human	resource	app
recruitment	/	The	business	problem
employee	satisfaction	and	retention	/	The	business	problem
training	/	The	business	problem
health	and	safety	/	The	business	problem
career	and	compensation	/	The	business	problem
features	/	Application	features
sheet	/	Sheets
costs,	training	/	Training	costs
global	selector,	using	/	Using	the	global	selector
developing	/	How	the	application	was	developed
Employees	table	/	How	the	application	was	developed
Hierarchy	table	/	How	the	application	was	developed
Survey	table	/	How	the	application	was	developed
Training	table	/	How	the	application	was	developed
Courses	table	/	How	the	application	was	developed
Map	shapes	table	/	How	the	application	was	developed
dimensions	/	Dimensions
measures	/	Dimensions

Human	Resources	analysis
about	/	The	business	problem
preparing	/	The	business	problem

HyperCube
about	/	How	it	works…



I
Image

creating	/	Creating	text	and	images,	Adding	Images
indicator	variables

about	/	Indicator	variables
Join	Categories	option	/	Join	Categories
As	Category	option	/	As	Category
As	Numeric	option	/	As	Numeric

information	gain
about	/	Entropy	and	information	gain

input	variables
about	/	Datasets,	observations,	and	variables



K
Kaggle

about	/	Datasets,	observations,	and	variables
URL	/	Datasets,	observations,	and	variables,	Regression	performance

keyboard	shortcuts,	Qlik	Sense	Desktop
about	/	Keyboard	shortcuts	in	Qlik	Sense®	Desktop

key	fields	/	The	process
Keyhole	Markup	Language	(KML)	/	Creating	geo	maps	in	Qlik	Sense®
Key	Performance	Indicator	(KPI)

about	/	Data	analysis,	data	applications,	and	dashboards
Key	Performance	Indicators	(KPI)	/	Exploring	Qlik	Sense	Desktop
Key	Performance	Indicators	(KPIs)	/	Highlighting	the	performance	measure
in	a	bar	chart
key	tables,	Travel	Expense	Discovery	application

Expenses	table	/	Expenses
PerDiemsRates	table	/	PerDiemRates
Airfare	table	/	Airfare
Department	table	/	Department
Budget	table	/	Budget
LinkTable	/	LinkTable

KPI	object
about	/	The	KPI	object
using,	in	Qlik	Sense	/	Effectively	using	the	KPI	object	in	Qlik	Sense®,
How	to	do	it…,	How	it	works…,	There's	more…

kurtosis
about	/	Measures	of	the	shape	of	the	distribution	–	skewness	and
kurtosis
URL	/	Measures	of	the	shape	of	the	distribution	–	skewness	and
kurtosis



L
labeled	dataset

about	/	Machine	learning	–	unsupervised	and	supervised	learning
latest	record,	for	dimensional	value

identifying,	Previous()	function	used	/	Using	the	Previous()	function	to
identify	the	latest	record	for	a	dimensional	value,	How	it	works…

Library	/	What	makes	up	a	Qlik	Sense®	application?
License	Monitor	/	Monitoring
limitations

applying,	to	charts	/	Applying	limitations	to	charts,	How	to	do	it…,
There's	more…

line-level	table	/	Using	the	Concat()	function	to	display	a	string	of	field
values	as	a	dimension
line	chart

about	/	The	line	chart
Load	Script	/	What	makes	up	a	Qlik	Sense®	application?
login	access	pass	/	Tokens
Logistic	Regression	/	Linear	and	Logistic	Regression
Lower	Confidence	Level	/	Measures	of	the	shape	of	the	distribution	–
skewness	and	kurtosis



M
Machine	Learning	(ML)

about	/	Machine	learning	–	unsupervised	and	supervised	learning
supervised	learning	/	Machine	learning	–	unsupervised	and	supervised
learning
unsupervised	learning	/	Machine	learning	–	unsupervised	and
supervised	learning
cluster	analysis	/	Cluster	analysis
hierarchical	clustering	/	Hierarchical	clustering
association	analysis	/	Association	analysis

maps	generation,	Qlik	Sense
URL	/	There's	more…

Mashup	editor
about	/	Web	mashups
pre-built	templates	/	Web	mashups

mashups
generating,	Qlik	Dev	Hub	used	/	Using	Qlik	Dev	Hub	to	generate
mashups,	How	to	do	it…,	How	it	works…,	There's	more…

master	library
creating,	from	data	model	viewer	/	Creating	a	Master	Library	from	the
Data	model	viewer,	How	to	do	it...,	How	it	works...,	There's	more…
using,	in	edit	mode	/	Using	a	Master	Library	in	the	Edit	mode,	How	to
do	it...

measure	/	Adding	dimensions	and	measures
measures	of	central	tendency

mean	/	Measures	of	central	tendency	–	mean,	median,	and	mode
median	/	Measures	of	central	tendency	–	mean,	median,	and	mode
mode	/	Measures	of	central	tendency	–	mean,	median,	and	mode

measures	of	dispersion
about	/	Measures	of	dispersion	–	range,	quartiles,	variance,	and
standard	deviation
range	/	Range
quartiles	/	Quartiles
variance	/	Variance
standard	deviation	/	Standard	deviation



median,	in	quartile	range
identifying,	FirstSortedValue()	function	used	/	Using	the
FirstSortedValue()	function	to	identify	the	median	in	a	quartile	range,
How	it	works…

menus,	charts
Data	menu	/	The	Data	menu
Sorting	menu	/	The	Sorting	menu
Add-ons	menu	/	The	Add-ons	menu
Appearance	menu	/	The	Appearance	menu

Minstring()	function
used,	for	calculating	age	of	oldest	case	in	queue	/	Using	the
Minstring()	function	to	calculate	the	age	of	the	oldest	case	in	a	queue,
How	to	do	it…,	How	it	works…

model	evaluation
about	/	Model	evaluation
performing	/	Model	evaluation
new	data,	scoring	/	Scoring	new	data

model	optimization	/	Partitioning	datasets	and	model	optimization
models

Linear	Regression	/	Linear	and	Logistic	Regression
Logistic	Regression	/	Linear	and	Logistic	Regression
Neural	Networks	/	Neural	Networks

MOOC	course
URL	/	Further	learning

moving	annual	total	(MAT)
about	/	Setting	up	a	moving	annual	total	figure
reference	link	/	Setting	up	a	moving	annual	total	figure

moving	annual	total	figure
setting	up	/	Getting	ready,	How	to	do	it…,	How	it	works…

MS	PowerPoint
stories,	exporting	to	/	Exporting	stories	to	MS	PowerPoint,	How	to	do
it…,	How	it	works…

multi	measure	expression
creating,	in	Set	Analysis	/	Creating	a	multi-measure	expression	in	Set
Analysis,	How	to	do	it…,	How	it	works…

Multiple	Linear	Regression	/	Linear	and	Logistic	Regression
My	Workspace	/	Starting	application	authoring



N
NetworkDays()	function

used,	for	calculating	working	days	in	calendar	month	/	Using	the
NetworkDays()	function	to	calculate	the	working	days	in	a	calendar
month,	How	to	do	it…,	How	it	works…

Neural	Network	model
about	/	Neural	Networks
input	layer	/	Neural	Networks
hidden	layer	/	Neural	Networks
output	layer	/	Neural	Networks

new	sheet,	data	discovery
creating	/	Creating	a	new	sheet
predefined	visualization,	adding	to	/	Adding	a	predefined	visualization
to	a	new	sheet
Combo	chart	object,	creating	/	Creating	a	Combo	chart	object
publishing	/	Publishing	a	private	sheet

node
about	/	Nodes

nominal	categorical	variable
about	/	Datasets,	observations,	and	variables

numeric	variable
about	/	Datasets,	observations,	and	variables

numeric	variables
about	/	Numeric	variables
Box	Plot	/	Box	plots
histogram	/	Histograms
cumulative	plot	/	Cumulative	plots



O
Open	Database	Connectivity	(ODBC)	/	Creating	a	database	connection,
Getting	ready…,	Loading	data
Operations	Monitor	/	Monitoring
ordinal	categorical	variable

about	/	Datasets,	observations,	and	variables
output	variables

about	/	Datasets,	observations,	and	variables
overfitting	/	Underfitting	and	overfitting



P
P()	function

using,	in	Set	Analysis	/	Using	the	element	functions	P()	and	E()	in	Set
Analysis,	How	to	do	it…,	There's	more…

Peek()	function
used,	for	creating	currency	Exchange	Rate	Calendar	/	Using	the	Peek()
function	to	create	a	currency	Exchange	Rate	Calendar,	How	to	do	it…,
How	it	works…
used,	for	creating	Trial	Balance	sheet	/	Using	the	Peek()	function	to
create	a	Trial	Balance	sheet,	How	to	do	it…,	How	it	works…

peoplechart-properties.js	file	/	Extending	the	Qlik	Sense®	client
peoplechart.css	file	/	Extending	the	Qlik	Sense®	client
performance	measure

highlighting,	in	bar	chart	/	Highlighting	the	performance	measure	in	a
bar	chart,	How	to	do	it…,	How	it	works…

persistent	colors
associating,	to	field	values	/	Associating	persistent	colors	to	field
values,	How	to	do	it…,	How	it	works…

pie	chart
about	/	The	pie	chart

point	in	time	analysis
with	sets	/	Point	in	time	using	Set	Analysis,	How	to	do	it…,	How	it
works…

predictive	analytics	/	Analytics,	predictive	analytics,	and	data	visualization
about	/	Machine	learning	–	unsupervised	and	supervised	learning

predictive	analytics	process
steps	/	Analytics,	predictive	analytics,	and	data	visualization

Previous()	function
used,	for	identifying	latest	record	for	dimensional	value	/	Using	the
Previous()	function	to	identify	the	latest	record	for	a	dimensional
value,	How	it	works…

private	sheets
about	/	Creating	private,	approved,	and	community	sheets
creating	/	Getting	ready,	How	it	works…

properties	panel



defining,	in	Qlik	Sense	visualizations	/	Defining	a	Properties	panel	in
Qlik	Sense®	visualizations,	How	to	do	it…,	How	it	works…



Q
QIX	engine

about	/	The	QIX	engine
Qlik

about	/	Visualization	toolbox
Qlik	Branch

about	/	Developer	community	–	Qlik	Branch
URL	/	Developer	community	–	Qlik	Branch,	Visualization	toolbox

Qlik	Community
URL	/	Visualization	toolbox

Qlik	DataMarket
using	/	Using	the	Qlik	DataMarket,	How	to	do	it…,	How	it	works…

Qlik	Developer	Hub
about	/	Qlik®	Dev	Hub
single	configurator	/	Qlik®	Dev	Hub
extension	editor	/	Qlik®	Dev	Hub
mashup	editor	/	Qlik®	Dev	Hub
Engine	API	Explorer	/	Qlik®	Dev	Hub
web	mashups	/	Web	mashups

Qlik	Dev	Hub
about	/	Using	the	Qlik	Dev	Hub	in	Qlik	Sense®	2.1.1
using,	in	Qlik	Sense	2.1.1	/	Using	the	Qlik	Dev	Hub	in	Qlik	Sense®
2.1.1
single	configurator	/	Single	configurator,	Single	configurator
extensions	editor	/	Extensions	editor,	Extension	editor
mashup	editor	/	Mashup	editor
working	/	How	it	works…
Extension	editor,	using	in	/	Using	Extension	editor	in	Qlik	Dev	Hub,
How	to	do	it…,	There's	more…
used,	for	generating	mashups	/	Using	Qlik	Dev	Hub	to	generate
mashups,	How	to	do	it…,	How	it	works…,	There's	more…

Qlik	home	page
URL	/	Installing	Qlik	Sense	Desktop

Qlik	Management	Console	(QMC)
about	/	Clients



Qlik	Market
URL	/	Visualization	toolbox

QlikMarket®	data
using	/	Using	the	Qlik	DataMarket®	content
adding	/	Adding	the	QlikMarket®	data

Qlik	Sense
about	/	Introduction,	Scoring	new	data
geo	maps,	creating	in	/	Creating	geo	maps	in	Qlik	Sense®,	Getting
ready,	How	to	do	it…,	How	it	works…,	There's	more…
KPI	object,	using	in	/	Effectively	using	the	KPI	object	in	Qlik	Sense®,
How	to	do	it…,	How	it	works…,	There's	more…
dimensionless	bar	charts,	creating	in	/	Creating	dimensionless	bar
charts	in	Qlik	Sense®,	How	to	do	it…,	There's	more…
HTML	visualization	extension,	creating	for	/	Creating	an	HTML
visualization	extension	for	Qlik	Sense®,	How	to	do	it…,	How	it
works…,	There's	more…
variables,	defining	in	/	Defining	variables	in	Qlik	Sense®,	How	to	do
it…,	How	it	works…,	There's	more…
dynamic	charts,	using	in	/	Creating	dynamic	charts	in	Qlik	Sense®,
How	to	do	it…,	How	it	works…
data	visualization	/	Data	visualization	in	Qlik	Sense
default	charts	/	Visualization	toolbox
data	analysis	/	Qlik	Sense	data	analysis
data	storytelling	/	Data	storytelling	with	Qlik	Sense
references	/	Further	learning

QlikSense-Cookbook-C7-R1-HelloWorld.js
Define	/	How	it	works…
Paint	/	How	it	works…

Qlik	Sense	2.1.1
visual	exploration	capability,	using	in	/	Using	the	visual	exploration
capability	in	Qlik	Sense®	2.1.1,	How	it	works…
Qlik	Dev	Hub,	using	in	/	Using	the	Qlik	Dev	Hub	in	Qlik	Sense®
2.1.1

Qlik	Sense	application
about	/	Introduction
publishing,	created	in	Qlik	Sense	desktop	/	Publishing	a	Qlik	Sense®
application	created	in	Qlik	Sense®	desktop,	How	it	works…



publishing,	to	Qlik	Sense	Cloud	/	Publishing	a	Qlik	Sense®
application	to	Qlik	Sense®	cloud,	How	to	do	it…,	How	it	works…,
There's	more…
embedding,	on	website	/	Embedding	Qlik	Sense®	application	on	a
website	using	a	single	configurator,	How	to	do	it…,	How	it	works…
creating,	for	predicting	credit	risks	/	Creating	a	Qlik	Sense	application
to	predict	credit	risks
creating	/	Creating	a	Qlik	Sense	App	to	control	the	activity

Qlik	Sense	Cloud
Qlik	Sense	application,	publishing	to	/	Publishing	a	Qlik	Sense®
application	to	Qlik	Sense®	cloud,	How	to	do	it…,	How	it	works…,
There's	more…

Qlik	Sense	Cloud	account
URL	/	Getting	ready

Qlik	Sense	Desktop
Legacy	mode,	activating	/	Activating	the	Legacy	Mode	in	Qlik	Sense®
desktop,	How	to	do	it…,	How	it	works…
keyboard	shortcuts	/	Keyboard	shortcuts	in	Qlik	Sense®	Desktop
ways	of	using	/	Purpose	of	the	book
about	/	Introducing	R,	Rattle,	and	Qlik	Sense	Desktop
installing	/	Installing	Qlik	Sense	Desktop
exploring	/	Exploring	Qlik	Sense	Desktop
URL	/	Further	learning

Qlik	Sense	Desktop	Tutorials
about	/	Visualization	toolbox

Qlik	Sense	Installer	file
URL	/	Getting	ready

Qlik	Sense	Management	Console	(QMC)	/	Overview	of	an	application's	life
cycle
Qlik	Sense	script

debugging	efficiently	/	Efficiently	debugging	the	script,	How	to	do
it…,	How	it	works…

Qlik	Sense	Server	2.1.1
URL	/	Getting	ready

Qlik	Sense	visualizations
properties	panel,	defining	in	/	Defining	a	Properties	panel	in	Qlik
Sense®	visualizations,	How	to	do	it…,	How	it	works…



custom	components,	creating	within	/	Creating	custom	components
within	Qlik	Sense®	visualizations,	Getting	ready,	How	to	do	it…

Qlik	Sense®
about	/	Qlik	Sense®	and	the	QlikView.Next	project
defining	/	Making	sense	of	modern	business
architecture	/	The	Qlik	Sense®	architecture
deployment	/	Deployment	and	licensing
licensing	/	Deployment	and	licensing

Qlik	Sense®	application
components	/	What	makes	up	a	Qlik	Sense®	application?
sharing	/	Sharing	an	application
navigation	/	Navigation
smart	visualizations	/	Smart	visualizations
global	search	/	Global	search
global	filtering	/	Global	filtering

Qlik	Sense®	apps,	using	in	cloud
about	/	Using	Qlik	Sense®	apps	in	the	cloud
app,	uploading	from	desktop	/	Uploading	an	app	from	the	desktop
app,	creating	in	Qlik	Sense®	Cloud	/	Creating	an	app	in	Qlik	Sense®
Cloud
app,	sharing	in	Qlik	Sense®	Cloud	/	Sharing	an	app	in	Qlik	Sense®
Cloud
apps,	maintaining	/	Maintaining	Qlik	Sense®	Cloud	apps

Qlik	Sense®	client
extending	/	Extending	the	Qlik	Sense®	client

Qlik	Sense®	Cloud
about	/	Cloud	sharing

Qlik	Sense®	data	model
about	/	The	Qlik	Sense®	data	model
multitable	data	model,	creating	/	Creating	a	multitable	data	model
tables,	linking	/	Linking	tables
pitfalls	/	Pitfalls	in	the	data	model

Qlikview	/	Getting	ready…
QlikView.Next	project

about	/	Qlik	Sense®	and	the	QlikView.Next	project
themes	/	Qlik	Sense®	and	the	QlikView.Next	project

QlikView®	applications



migrating,	from	Qlik	Sense®	/	Migrating	applications	from
QlikView®	to	Qlik	Sense®
script	changes	/	Changes	to	the	script
user	interface	changes	/	Changes	to	the	user	interface

Qlik®	way
about	/	The	Qlik®	way
color	coding	/	Color	coding
freedom	of	data	navigation	/	Freedom	of	data	navigation
calculation	on	demand	/	Calculation	on	demand

quartiles
generating,	Fractile()	function	used	/	Using	the	Fractile()	function	to
generate	quartiles,	How	to	do	it…,	How	it	works…
about	/	Quartiles
URL	/	Quartiles

qvd	file	/	How	it	works…
QVS	(QlikView	Script	File)

about	/	Packaging	the	code	in	script	files



R
R

about	/	Introducing	R,	Rattle,	and	Qlik	Sense	Desktop,	Scoring	new
data
downloading	/	Downloading	and	installing	R
installing	/	Downloading	and	installing	R
installation,	testing	with	R	Console	/	Starting	the	R	Console	to	test
your	R	installation

R-Square	/	Predicted	versus	Observed	Plot
Random	Forest	/	Random	Forest
range

about	/	Range
Rangesum()	function

used,	for	plotting	cumulative	figures	in	trendlines	charts	/	Using	the
Rangesum()	function	to	plot	cumulative	figures	in	trendline	charts,
How	to	do	it…,	How	it	works…

Rattle
about	/	Introducing	R,	Rattle,	and	Qlik	Sense	Desktop,	Scoring	new
data
downloading	/	Downloading	and	installing	Rattle
installing	/	Downloading	and	installing	Rattle
used,	for	scoring	loan	applications	/	Using	Rattle	to	score	new	loan
applications
models	/	Other	models

Rattle,	using,	for	forecast
about	/	Using	Rattle	to	forecast	the	demand
correlation	analysis	/	Correlation	Analysis	with	Rattle
model,	creating	/	Building	a	model
performance,	improving	/	Improving	performance

R	Console
starting,	for	testing	R	installation	/	Starting	the	R	Console	to	test	your
R	installation

Reference	Lines
adding,	to	trendline	charts	/	Adding	Reference	Lines	to	trendline
charts,	How	to	do	it…,	How	it	works…



Reference	Lines	in	Sales
versus	Target	gauge	chart	/	Reference	lines	in	Sales	versus	Target
gauge	chart,	How	to	do	it…,	There's	more…

registered	users	/	Understanding	the	bike	rental	problem
regression	performance

measuring	/	Regression	performance
predicted,	versus	observed	plot	/	Predicted	versus	Observed	Plot

relationships
about	/	Relationships,	How	to	do	it…

reload	time,	of	application
optimizing	/	Optimizing	the	reload	time	of	the	application,	How	it
works…

requirement	specifications,	authoring	engaging	applications
data	/	The	requirement	specifications
KPIs	/	The	requirement	specifications
dimensions	/	The	requirement	specifications
security	/	The	requirement	specifications

rescaling
about	/	Rescaling	data
data	/	Rescaling	data

Responsive	Web	Design	(RWD)	/	Data	discovery	consumption
requirements
Risk	Chart

about	/	Risk	Chart
obtaining	/	Risk	Chart

ROC	Curve
about	/	ROC	Curve

roles,	variable
input	/	Loading	data
target	/	Loading	data
risk	/	Loading	data
identifier	/	Loading	data
ident	/	Loading	data
Ignore	/	Loading	data



S
=	sign

using,	with	variables	/	Using	the	=	sign	with	variables	in	Set	Analysis,
How	to	do	it…,	How	it	works…

Sales	Discovery	application
business	problem,	analyzing	/	The	business	problem
features	/	Application	features
application	features	/	Application	features
top	customers,	analyzing	/	Who	are	our	top	customers?
360-degree	customer	view	/	The	360-degree	customer	view
customers,	filtering	/	Filtering	customers
shipments	for	top	customers,	reviewing	/	Reviewing	shipments	for	top
customers
bottom	five	customers,	reviewing	/	Reviewing	the	bottom	five
customers
productive	sales	representatives,	analyzing	/	Who	are	our	most
productive	sales	representatives?
products,	analyzing	/	Analyzing	products
customer	sales,	analyzing	/	Analyzing	customer	sales
building	/	Building	the	application
SalesDetails	table	/	The	SalesDetails	table
Customers	table	/	The	Customers	table
AggSales	table	/	The	AggSales	table
US	States	ISO	CODE	2	polygons	table	/	US	States	ISO	CODE	2
polygons

Sales	Discovery	Library
analyzing	/	Analyzing	the	Sales	Discovery	Library
dimensions	/	Dimensions
measures	/	Measures
visualizations	/	Visualizations

SAP	connector	/	Getting	ready…
scatter	chart

about	/	The	scatter	chart
data	points,	navigating	in	/	Navigating	many	data	points	in	a	scatter
chart,	How	to	do	it…,	How	it	works…



script
structuring	/	Structuring	the	script,	How	to	do	it…,	How	it	works…

script	files
code,	packaging	/	Packaging	the	code	in	script	files,	How	to	do	it…,
How	it	works…

search	strings
using,	inside	set	modifier	/	Using	search	strings	inside	a	set	modifier,
How	to	do	it…,	How	it	works…

security
about	/	Security
authentication	/	Authentication	and	authorization
authorization	/	Authentication	and	authorization
content	security	/	Content	security

services,	Qlik	Sense®
Qlik	Sense	Engine	Service	(The	QIX	engine)	/	Services
Qlik	Sense	Printing	Service	/	Services
Qlik	Sense	Proxy	Service	(QPS)	/	Services
Qlik	Sense	Repository	Service	(QRS)	/	Services
Qlik	Sense	Repository	Database	/	Services
Qlik	Sense	Scheduler	Service	(QSS)	/	Services
Qlik	Sense	Service	Dispatcher	/	Services

Set	Analysis
about	/	Introduction,	Cracking	the	syntax	for	Set	Analysis
syntax,	cracking	for	/	Cracking	the	syntax	for	Set	Analysis,	How	to	do
it…,	How	it	works…
=	sign,	using	with	variables	/	Using	the	=	sign	with	variables	in	Set
Analysis,	How	to	do	it…,	How	it	works…
comparison	sets,	using	in	/	Using	comparison	sets	in	Set	Analysis,
How	to	do	it…,	How	it	works…
embedded	functions,	using	in	/	Using	embedded	functions	in	Set
Analysis,	How	it	works…,	There's	more…
multi	measure	expression,	creating	in	/	Creating	a	multi-measure
expression	in	Set	Analysis,	How	to	do	it…,	How	it	works…
P()	function,	using	in	/	Using	the	element	functions	P()	and	E()	in	Set
Analysis,	How	to	do	it…,	There's	more…
E()	function,	using	in	/	Using	the	element	functions	P()	and	E()	in	Set
Analysis,	How	to	do	it…,	There's	more…



Set	Analysis	expressions
about	/	Using	flags	in	Set	Analysis
flags,	using	in	/	How	to	do	it…,	There's	more…

set	modifier
about	/	There's	more…
search	strings,	using	inside	/	Using	search	strings	inside	a	set	modifier,
How	to	do	it…,	How	it	works…

sheets
about	/	Sheets
base	sheets	/	Sheets
my	sheets	/	Sheets
community	sheets	/	Sheets

simple	data	app
creating	/	Creating	a	simple	data	app

Simple	Linear	Regression	/	Linear	and	Logistic	Regression
single	configurator

Qlik	Sense	application,	embedding	on	website	/	Embedding	Qlik
Sense®	application	on	a	website	using	a	single	configurator,	How	to
do	it…,	How	it	works…

skewness
about	/	Measures	of	the	shape	of	the	distribution	–	skewness	and
kurtosis
URL	/	Measures	of	the	shape	of	the	distribution	–	skewness	and
kurtosis

Slowly	Changing	Dimensions
handling,	extended	interval	match	used	/	Using	an	extended	interval
match	to	handle	Slowly	Changing	Dimensions,	How	to	do	it…,	How	it
works…,	There's	more…

smart	data	load	profiling
using	/	Using	smart	data	load	profiling,	How	to	do	it…,	How	it
works…,	There's	More….

Smart	Search
using	/	Using	Smart	Search,	How	it	works…,	There's	More….

snapshots
creating	/	Creating	Snapshots,	How	to	do	it…,	How	it	works…

standard	deviation
reference	link	/	How	it	works…



about	/	Standard	deviation
Standard	Error	/	Measures	of	the	shape	of	the	distribution	–	skewness	and
kurtosis
Statistical	Process	Control	(SPC)

about	/	How	it	works…
stories

creating	/	Creating	and	sharing	stories
defining	/	Defining	a	story
snapshots,	creating	/	Creating	snapshots
text,	adding	/	Adding	text
shapes,	adding	/	Adding	shapes
media	library	/	Media	library
publishing	/	Publishing	your	story
exporting,	to	MS	PowerPoint	/	Exporting	stories	to	MS	PowerPoint,
How	to	do	it…,	How	it	works…

storytelling
about	/	Storytelling

streams
about	/	Introducing	streams,	Streams

Streams	/	Starting	application	authoring
string	of	field	values,	as	dimension

displaying,	Concat()	function	used	/	Using	the	Concat()	function	to
display	a	string	of	field	values	as	a	dimension,	How	to	do	it…,	How	it
works…

sub	routines
using,	in	Qlik	Sense	/	How	to	use	sub	routines	in	Qlik	Sense®,	How	to
do	it…

summary	reports
about	/	Summary	reports
measures	of	central	tendency	/	Measures	of	central	tendency	–	mean,
median,	and	mode
measures	of	dispersion	/	Measures	of	dispersion	–	range,	quartiles,
variance,	and	standard	deviation
measures	of	shape	of	distribution	/	Measures	of	the	shape	of	the
distribution	–	skewness	and	kurtosis

supervised	learning
about	/	Machine	learning	–	unsupervised	and	supervised	learning



Supported	Vector	Machine	(SVM)	/	Supported	Vector	Machines
syntax

cracking,	for	Set	Analysis	/	Cracking	the	syntax	for	Set	Analysis,	How
to	do	it…,	How	it	works…



T
tables

about	/	Tables
standard	table	/	Tables
pivot	table	/	Tables

Target	gauge	chart
versus	Reference	Lines	in	Sales	/	Reference	lines	in	Sales	versus
Target	gauge	chart,	How	to	do	it…,	There's	more…

target	variables
about	/	Datasets,	observations,	and	variables

tasks
about	/	Tasks
reload	tasks	/	Tasks
user	synchronizations	/	Tasks

Text
creating	/	Creating	text	and	images,	Getting	ready,	Adding	Text,	How
it	works…

text	summaries
about	/	Text	summaries
summary	reports	/	Summary	reports
missing	values,	displaying	/	Showing	missing	values

thumbnails
adding	/	Adding	thumbnails	–	a	clear	environment,	How	to	do	it…,
How	it	works…

tokens	/	Tokens
training	dataset

about	/	Machine	learning	–	unsupervised	and	supervised	learning
Travel	Expense	Discovery	application

business	problem,	analyzing	/	The	business	problem
features	/	Application	features
expenses,	tracking	/	Tracking	expenses
expenses	overspent,	analyzing	/	Analyzing	expenses	overspent
data,	analyzing	/	Digging	deeper	into	the	data
travel	expense	story,	creating	/	Creating	an	analysis	story	for	travel
expenses



developing	/	Developing	the	application
key	tables,	examining	/	Examining	the	key	tables
dimensions	/	Dimensions

travel	expense	story
creating	/	Creating	an	analysis	story	for	travel	expenses
overview,	creating	/	Creating	an	overview
analysis,	sharing	/	Sharing	our	analysis
finishing	/	Finishing	the	story

tree	map
about	/	The	tree	map

tree	maps
about	/	Creating	Tree	Maps
creating	/	Getting	ready,	How	to	do	it…,	How	it	works…,	There's
more…

trendline	charts
Reference	Lines,	adding	to	/	Adding	Reference	Lines	to	trendline
charts,	How	to	do	it…,	How	it	works…

Trial	Balance	sheet
creating,	Peek()	function	used	/	Using	the	Peek()	function	to	create	a
Trial	Balance	sheet,	How	to	do	it…,	How	it	works…

types	of	predictions,	classifiers	performance
True	Positive	/	Confusion	matrix,	accuracy,	sensitivity,	and	specificity
False	Positive	/	Confusion	matrix,	accuracy,	sensitivity,	and	specificity
True	Negative	/	Confusion	matrix,	accuracy,	sensitivity,	and	specificity
False	Negative	/	Confusion	matrix,	accuracy,	sensitivity,	and
specificity



U
UCI	Machine	Learning	Repository

reference	/	Regression	performance
UI	calculation	speed

optimizing	/	Optimizing	the	UI	calculation	speed,	How	to	do	it…
underfitting	/	Underfitting	and	overfitting
unlabeled	dataset

about	/	Association	analysis
unlabeled	datasets

about	/	Machine	learning	–	unsupervised	and	supervised	learning
unsupervised	learning

about	/	Machine	learning	–	unsupervised	and	supervised	learning
Upper	Confidence	Level	/	Measures	of	the	shape	of	the	distribution	–
skewness	and	kurtosis
user	groups

executive	management	/	Data	analysis,	data	applications,	and
dashboards
middle	managers	/	Data	analysis,	data	applications,	and	dashboards
analysts	/	Data	analysis,	data	applications,	and	dashboards

user	types
developer	/	Security	rules
contributor	/	Security	rules
consumer	/	Security	rules



V
variable

about	/	Loading	data
variables

=	sign,	using	with	/	Using	the	=	sign	with	variables	in	Set	Analysis,
How	to	do	it…,	How	it	works…
defining,	in	Qlik	Sense	/	Defining	variables	in	Qlik	Sense®,	How	to
do	it…,	How	it	works…,	There's	more…

variance
about	/	Variance

visual	exploration	capability
using,	in	Qlik	Sense	2.1.1	/	Using	the	visual	exploration	capability	in
Qlik	Sense®	2.1.1,	How	it	works…

visualizations
structuring	/	Structuring	visualizations,	How	to	do	it…,	How	it
works…

visualization	toolbox
about	/	Visualization	toolbox



W
web	mashups

about	/	Web	mashups
website

Qlik	Sense	application,	embedding	on	/	Embedding	Qlik	Sense®
application	on	a	website	using	a	single	configurator,	How	to	do	it…,
How	it	works…

Weka	/	Loading	data
working	days,	in	calendar	month

calculating,	NetworkDays()	function	used	/	Using	the	NetworkDays()
function	to	calculate	the	working	days	in	a	calendar	month,	How	to	do
it…,	How	it	works…


	Qlik Sense: Advanced Data Visualization for Your Organization
	Credits
	Preface
	What this learning path covers
	What you need for this learning path
	Who this learning path is for
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Module 1
	1. Qlik Sense® and Data Discovery
	Continuing disruption
	Qlik Sense® and the QlikView.Next project
	Making sense of modern business
	What is data discovery?
	The empowered user
	Interaction with data
	Traditional business intelligence architecture
	The Qlik® way
	Color coding
	Freedom of data navigation
	Calculation on demand
	Data discovery—the evolution of BI
	Summary
	2. Overview of a Qlik Sense® Application's Life Cycle
	Overview of an application's life cycle
	Starting application authoring
	What makes up a Qlik Sense® application?
	Sharing an application
	Continuing the application's life cycle
	Summary
	3. Empowering Next Generation Data Discovery Consumers
	Data discovery consumption requirements
	Introducing the hub
	Introducing streams
	Exploring the components of the application
	Sheets
	Bookmarks
	Data storytelling
	Navigating and leveraging the associative experience
	Navigation
	Smart visualizations
	Global search
	Global filtering
	Extending with Library
	Summary
	4. Contributing to Data Discovery
	Realities of the data discovery contributor
	Creating private bookmarks
	Creating and sharing private sheets
	Creating a private sheet
	Publishing a private sheet
	Creating a new sheet
	Adding a predefined visualization to a new sheet
	Creating a Combo chart object
	Publishing a private sheet
	Creating and sharing stories
	Defining a story
	Creating snapshots
	Adding text
	Adding shapes
	Media library
	Publishing your story
	Summary
	5. Authoring Engaging Applications
	Preparations and requirements
	The requirement specifications
	The communication problem
	A step-wise implementation
	The process
	Getting started with the app creation
	Creating a new app
	Loading your data
	Loading additional tables
	Using the Data load editor
	Creating a database connection
	Data connectors
	The analysis interface—sheets and visualizations
	Creating a sheet
	Adding visualizations
	Adding dimensions and measures
	Defining bar charts
	Storytelling
	The application library
	Which fields should be exposed?
	Defining KPIs
	Creating library entries
	Best practices in data visualization
	Dashboard
	Analysis
	Reporting
	Structuring a sheet
	Graphs and other visualizations
	Dimensions and measures
	The bar chart
	The pie chart
	The line chart
	The KPI object
	The gauge
	The scatter chart
	The tree map
	The geographical map
	Tables
	Sorting and colors
	Migrating applications from QlikView® to Qlik Sense®
	Changes to the script
	Changes to the user interface
	Publishing your apps
	Summary
	6. Building Qlik Sense® Data Models
	The QIX engine
	The Qlik Sense® data model
	Creating a multitable data model
	Linking tables
	Structuring your data
	Normalization
	Star schema and snowflake schema
	Pitfalls in the data model
	The data model viewer
	Using preview mode
	Summary
	7. Qlik Sense® Apps in the Cloud
	Why use the cloud?
	Cloud sharing
	Cloud content
	Using Qlik Sense® apps in the cloud
	Uploading an app from the desktop
	Creating an app in Qlik Sense® Cloud
	Sharing an app in Qlik Sense® Cloud
	Maintaining Qlik Sense® Cloud apps
	Using the Qlik DataMarket® content
	Adding the QlikMarket® data
	Summary
	8. Extending the Qlik® Analytic Platform
	Qlik® Dev Hub
	Web mashups
	Extending the Qlik Sense® client
	Engine API Explorer
	Developer community – Qlik Branch
	Summary
	9. Administering Qlik Sense®
	The Qlik Sense® architecture
	Services
	Clients
	Applications
	Nodes
	Streams
	Deployment and licensing
	Single node or multinode
	License and access passes
	Tokens
	Access rules
	Management and monitoring
	Importing and managing apps
	Importing extensions
	Users and user directories
	Defining streams
	Connectivity management
	Tasks
	System management
	Security rules
	Monitoring
	Security
	Authentication and authorization
	Content security
	Summary
	10. Sales Discovery
	The business problem
	Application features
	Who are our top customers?
	The 360-degree customer view
	Filtering customers
	Reviewing shipments for top customers
	Reviewing the bottom five customers
	Who are our most productive sales representatives?
	Analyzing products
	Analyzing customer sales
	Building the application
	The SalesDetails table
	The Customers table
	The AggSales table
	US States ISO CODE 2 polygons
	Analyzing the Sales Discovery Library
	Dimensions
	Measures
	Visualizations
	Summary
	11. Human Resource Discovery
	The business problem
	Application features
	Sheets
	Training costs
	Using the global selector
	How the application was developed
	Dimensions
	Summary
	12. Travel Expense Discovery
	The business problem
	Application features
	Tracking expenses
	Analyzing expenses overspent
	Digging deeper into the data
	Creating an analysis story for travel expenses
	Creating an overview
	Sharing our analysis
	Finishing the story
	Developing the application
	Examining the key tables
	Expenses
	PerDiemRates
	Airfare
	Department
	Budget
	LinkTable
	Dimensions
	Measures
	Visualizations
	Summary
	13. Demographic Data Discovery
	Problem analysis
	Application features
	Analysis
	Using the lasso selector to make selections
	Using the global selector to make selections
	How the application was developed
	Dimensions
	Measures
	Summary
	2. Module 2
	1. Getting Started with the Data
	Introduction
	Extracting data from databases and data files
	Getting ready…
	How to do it…
	How it works…
	There's more…
	See also…
	Extracting data from Web Files
	Getting ready…
	How to do it…
	How it works…
	There's more…
	See also…
	Activating the Legacy Mode in Qlik Sense® desktop
	Getting ready…
	How to do it…
	How it works…
	There's more…
	See also…
	Extracting data from custom databases
	Getting ready…
	How to do it…
	How it works…
	There's more…
	See also…
	Invoking help while in the data load editor or the expression editor
	Getting ready…
	How to do it…
	There's more…
	See also…
	Previewing data in the Data model viewer
	Getting ready
	How to do it…
	How it works...
	Viewing the data model
	Viewing the associations
	Table Meta Data
	There's more...
	Creating a Master Library from the Data model viewer
	Getting ready
	How to do it...
	How it works...
	There's more…
	Using a Master Library in the Edit mode
	Getting ready
	How to do it...
	There's more…
	2. Visualizations
	Introduction
	Creating Snapshots
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Creating and adding content to a story
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Adding embedded sheets to the story
	Getting ready
	How to do it…
	How it works…
	There's more…
	Highlighting the performance measure in a bar chart
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Associating persistent colors to field values
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Using the ColorMix1 function
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Composition
	Getting ready
	How to do it…
	How it works…
	There's more…
	Relationships
	Getting ready
	How to do it…
	How it works…
	Comparison
	Getting ready
	How to do it…
	How it works…
	See also
	Distribution
	Getting ready
	How to do it…
	How it works…
	Structuring visualizations
	Getting ready
	How to do it…
	How it works…
	3. Scripting
	Introduction
	Structuring the script
	Getting ready
	How to do it…
	How it works…
	Efficiently debugging the script
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Packaging the code in script files
	Getting ready
	How to do it…
	How it works…
	See also
	How to use sub routines in Qlik Sense®
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Optimizing the UI calculation speed
	Getting ready
	How to do it…
	How it works…
	Optimizing the reload time of the application
	Getting ready
	How to do it…
	How it works…
	Using a For Each loop to load data from multiple files
	Getting ready
	How to do it…
	How it works…
	There's more…
	Using the Concat function to store multiple field values in a single cell
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	4. Managing Apps and User Interface
	Introduction
	Publishing a Qlik Sense® application created in Qlik Sense® desktop
	Getting ready
	How to do it…
	How it works…
	There's more…
	Creating private, approved, and community sheets
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Publishing a Qlik Sense® application to Qlik Sense® cloud
	Getting ready
	How to do it…
	How it works…
	There's more…
	Creating geo maps in Qlik Sense®
	Getting ready
	How to do it…
	How it works…
	There's more…
	Reference lines in Sales versus Target gauge chart
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Effectively using the KPI object in Qlik Sense®
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Creating Tree Maps
	Getting ready
	How to do it…
	How it works…
	There's more…
	Creating dimensionless bar charts in Qlik Sense®
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Adding Reference Lines to trendline charts
	Getting ready
	How to do it…
	How it works…
	Creating text and images
	Getting ready
	How to do it…
	Adding Images
	Adding Text
	How it works…
	Applying limitations to charts
	Getting ready
	How to do it…
	How it works…
	There's more…
	Adding thumbnails – a clear environment
	Getting ready
	How to do it…
	How it works…
	Navigating many data points in a scatter chart
	Getting ready
	How to do it…
	How it works…
	There's more…
	5. Useful Functions
	Introduction
	Using an extended interval match to handle Slowly Changing Dimensions
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Using the Previous() function to identify the latest record for a dimensional value
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Using the NetworkDays() function to calculate the working days in a calendar month
	Getting ready
	How to do it…
	How it works…
	See also
	Using the Concat() function to display a string of field values as a dimension
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Using the Minstring() function to calculate the age of the oldest case in a queue
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Using the Rangesum() function to plot cumulative figures in trendline charts
	Getting ready
	How to do it…
	How it works…
	See also
	Using the Fractile() function to generate quartiles
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Using the FirstSortedValue() function to identify the median in a quartile range
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Using the Declare and Derive functions to generate Calendar fields
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Setting up a moving annual total figure
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Using the For Each loop to extract files from a folder
	Getting ready
	How to do it…
	How it works…
	Using the Peek() function to create a currency Exchange Rate Calendar
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Using the Peek() function to create a Trial Balance sheet
	Getting ready
	How to do it…
	How it works…
	See also
	6. Set Analysis
	Introduction
	Cracking the syntax for Set Analysis
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Using flags in Set Analysis
	Getting ready
	How to do it…
	How it Works…
	There's more…
	See also
	Using the = sign with variables in Set Analysis
	Getting ready
	How to do it…
	How it works…
	See also
	Point in time using Set Analysis
	Getting ready
	How to do it…
	How it works…
	Using comparison sets in Set Analysis
	Getting ready
	How to do it…
	How it works…
	Using embedded functions in Set Analysis
	Getting ready
	How to do it…
	How it works…
	There's more…
	Creating a multi-measure expression in Set Analysis
	Getting ready
	How to do it…
	How it works…
	Using search strings inside a set modifier
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Capturing a list of field values using a concat() function in Set Analysis
	Getting ready
	How to do it…
	How it works…
	Using the element functions P() and E() in Set Analysis
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	7. Extensions in Qlik Sense®
	Introduction
	Creating an HTML visualization extension for Qlik Sense®
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Defining a Properties panel in Qlik Sense® visualizations
	Getting ready
	How to do it…
	How it works…
	There's more…
	Creating custom components within Qlik Sense® visualizations
	Getting ready
	How to do it…
	How it works…
	There's more…
	Using data with extensions
	Getting ready
	How to do it…
	How it works…
	See also
	8. What's New in Version 2.1.1?
	Introduction
	Using the visual exploration capability in Qlik Sense® 2.1.1
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Defining variables in Qlik Sense®
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Exporting stories to MS PowerPoint
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Using the Qlik Dev Hub in Qlik Sense® 2.1.1
	Getting ready
	How to do it…
	Single configurator
	Extensions editor
	Mashup editor
	How it works…
	There's more…
	Single configurator
	Extension editor
	See also
	Using Extension editor in Qlik Dev Hub
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Using Qlik Dev Hub to generate mashups
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Embedding Qlik Sense® application on a website using a single configurator
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Using the Qlik DataMarket
	Getting ready…
	How to do it…
	How it works…
	See also
	Creating dynamic charts in Qlik Sense®
	Getting ready
	How to do it…
	How it works…
	There's More….
	Using Smart Search
	Getting ready
	How to do it…
	How it works…
	There's More….
	See also
	Using smart data load profiling
	Getting ready
	How to do it…
	How it works…
	There's More….
	Conclusion
	A. Appendix
	Keyboard shortcuts in Qlik Sense® Desktop
	3. Module 3
	1. Getting Ready with Predictive Analytics
	Analytics, predictive analytics, and data visualization
	Purpose of the book
	Introducing R, Rattle, and Qlik Sense Desktop
	Installing the environment
	Downloading and installing R
	Starting the R Console to test your R installation
	Downloading and installing Rattle
	Installing Qlik Sense Desktop
	Exploring Qlik Sense Desktop
	Further learning
	Summary
	2. Preparing Your Data
	Datasets, observations, and variables
	Loading data
	Loading a CSV File
	Transforming data
	Transforming data with Rattle
	Rescaling data
	Using the Impute option to deal with missing values
	Recoding variables
	Binning
	Indicator variables
	Join Categories
	As Category
	As Numeric
	Cleaning up
	Exporting data
	Further learning
	Summary
	3. Exploring and Understanding Your Data
	Text summaries
	Summary reports
	Measures of central tendency – mean, median, and mode
	Measures of dispersion – range, quartiles, variance, and standard deviation
	Range
	Quartiles
	Variance
	Standard deviation
	Measures of the shape of the distribution – skewness and kurtosis
	Showing missing values
	Visualizing distributions
	Numeric variables
	Box plots
	Histograms
	Cumulative plots
	Categorical variables
	Bar plots
	Mosaic plots
	Correlations among input variables
	The Explore Missing and Hierarchical options
	Further learning
	Summary
	4. Creating Your First Qlik Sense Application
	Customer segmentation and customer buying behavior
	Loading data and creating a data model
	Preparing the data
	Creating a simple data app
	Associative logic
	Creating charts
	Analyzing your data
	Further learning
	Summary
	5. Clustering and Other Unsupervised Learning Methods
	Machine learning – unsupervised and supervised learning
	Cluster analysis
	Centroid-based clustering the using K-means algorithm
	Customer segmentation with K-means clustering
	Preparing the data in Qlik Sense
	Creating a customer segmentation sheet in Qlik Sense
	Hierarchical clustering
	Association analysis
	Further learning
	Summary
	6. Decision Trees and Other Supervised Learning Methods
	Partitioning datasets and model optimization
	Decision Tree Learning
	Entropy and information gain
	Underfitting and overfitting
	Using a Decision Tree to classify credit risks
	Using Rattle to score new loan applications
	Creating a Qlik Sense application to predict credit risks
	Ensemble classifiers
	Boosting
	Random Forest
	Supported Vector Machines
	Other models
	Linear and Logistic Regression
	Neural Networks
	Further learning
	Summary
	7. Model Evaluation
	Cross-validation
	Regression performance
	Predicted versus Observed Plot
	Measuring the performance of classifiers
	Confusion matrix, accuracy, sensitivity, and specificity
	Risk Chart
	ROC Curve
	Further learning
	Summary
	8. Visualizations, Data Applications, Dashboards, and Data Storytelling
	Data visualization in Qlik Sense
	Visualization toolbox
	Creating a bar chart
	The Data menu
	The Sorting menu
	The Add-ons menu
	The Appearance menu
	Data analysis, data applications, and dashboards
	Qlik Sense data analysis
	In-memory analysis
	Associative experience
	Data applications and dashboards
	The DAR approach
	Data storytelling with Qlik Sense
	Creating a new story
	Further learning
	Summary
	9. Developing a Complete Application
	Understanding the bike rental problem
	Exploring the data with Qlik Sense
	Checking for temporal patterns
	Visual correlation analysis
	Creating a Qlik Sense App to control the activity
	Using Rattle to forecast the demand
	Correlation Analysis with Rattle
	Building a model
	Improving performance
	Model evaluation
	Scoring new data
	Further learning
	Summary
	A. Bibliography
	Index

